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FLUCTUATIONS AND CORRELATIONS
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The statistical system of π0, π+ and π− mesons with zero total isospin is studied. For neutral
pions there is the enhancement of the �uctuations, whereas for charged pions the isospin conservation
suppresses �uctuations. The correlations between the numbers of charged and neutral pions are observed
for ˇnite systems.
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INTRODUCTION

The aim of the present talk1 is to study some aspects of non-Abelian symmetries in the
statistical models. We consider SU(2)-isospin symmetry group for the pion system. The
role of the isospin conservation in a many-body system was ˇrst considered in the pioneering
paper of Bethe [2]. Many efforts were then aimed at studies of the pion system with ˇxed
isospin [3]. An effective theoretical formalism for non-Abelian symmetries in the statistical
mechanics was developed in [4] on the basis of the group projection technique. It allowed
one to consider the impact of the isospin conservation on the particle abundances and the
form of their momentum spectra in the statistical models of hadron production [5]. The
group projection technique was also used to calculate the colorless partition function of the
quarkÄgluon gas with SU(Nc)-color symmetry [6].

Our primary interest is to study an in�uence of non-Abelian charge conservation on the
particle number �uctuations. It was recently found [7] that exact conservation of Abelian
(additive) charges causes the suppression of the particle number �uctuations. In the present
study we restrict our consideration to the simplest statistical system with non-Abelian sym-
metry Å an ideal pion gas with zero isospin I = 0. Most discussions are done within
Boltzmann statistics. This makes it possible to obtain transparent analytical results and
compare them with those in the canonical ensemble for zero electric charge Q = 0.

1. PARTITION FUNCTION

The partition function of the ideal Boltzmann gas of pions π+, π−, π0 in the grand
canonical ensemble (GCE) reads

ZGCE =
∞∑

N0,N+,N−=0

(λ0 z)N0

N0!
(λ+ z)N+

N+!
(λ− z)N−

N−!
= exp [(λ0 + λ+ + λ−) z] , (1)

1See also the paper [1] for more details.
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where z is the one-particle partition function z = V/(2π2)
∞∫
0

p2dp exp

(
−

√
p2 + m2

T

)
=

V/(2π2)Tm2 K2 (m/T ). Here V and T are the system volume and temperature, m is the pion
mass1, and K2 is the modiˇed Hankel function. The auxiliary parameters λj with j = 0, +,−
are introduced to calculate the mean pion multiplicities, �uctuations and correlations. We
take λj ≡ 1 in the ˇnal formulae.

In the case of exact charge conservation, i.e., in the canonical ensemble (CE) with zero
charge Q = 0, the partition function is (see, e.g., [7, 8])

ZQ=0 =
∞∑

N0,N+,N−=0

δ (N+ − N−)
(λ0z)N0

N0!
(λ+z)N+

N+!
(λ−z)N−

N−!
=

= exp (λ0z)
1
2π

2π∫
0

dφ exp {z (λ+ exp [iφ] + λ− exp [−iφ])} . (2)

Note that an exact charge conservation in the CE (2) does not affect the neutral pions.
Their number distribution remains the Poissonian one, the same as in the GCE (1).

The partition function with total isospin I = 0 can be obtained using group projection
technique. Pions are transformed under vector (adjoint) representation of the SU(2) group.
This group has three parameters which can be chosen as Euler angles α = α, β, γ. In this
case the diagonal matrix elements have the following form [9]:

D1
±1,±1(α, β, γ) = e±i(α+γ)

(
1 + cos (β)

2

)
, D1

0,0(α, β, γ) = cos (β). (3)

The partition function is then presented as [10]

ZI=0

∫
dμ

∞∑
N0,N+,N−=0

[
λ0zD1

0,0(α)
]N0

N0!

[
λ+zD1

1,1(α)
]N+

N+!

[
λ−zD1

−1,−1(α)
]N−

N−!
=

=
∫

dμ exp [λ0zD1
0,0(α) + λ+zD1

1,1(α) + λ−zD1
−1,−1(α)]. (4)

Substituting explicit expressions for the Haar group measure dμ and matrix elements Dt
t3,t3 (3)

in Eq. (4), changing variables φ = α + γ, ϕ = (α− γ)/2, cos (β) = x and integration over ϕ,
one obtains

ZI=0 =
1
4π

2π∫
0

dφ

1∫
−1

dx exp
[
λ0zx + z

1 + x

2
(λ+eiφ + λ−e−iφ)

]
. (5)

Comparing ZI=0 (5) with the partition function ZQ=0 (2), one observes an additional
x-integration in Eq. (5). It re�ects a presence of the particle number correlations between
neutral and charged pions which were absent in the GCE and CE.

1We neglect a small difference between the masses of charged and neutral pions.
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2. FLUCTUATIONS AND CORRELATIONS OF π0, π+, π−

To calculate the mean multiplicities, correlations, and �uctuations for neutral and charged
pions, one has to return back to presentations of the partition functions by Eqs. (1), (2),
and (5). One ˇnds

〈Nj〉 =
1
Z

∂Z

∂λj

∣∣∣∣
λ=1

, 〈Ni Nj〉 ≡
1
Z

∂

∂λi

(
λj

∂Z

∂λj

)∣∣∣∣
λ=1

. (6)

Using Eq. (6), one obtains for the mean multiplicities of neutral and charged particles. The
ratios R0 = 〈N0〉/z, R± = 〈N±〉/z are shown in Fig. 1, a for Q = 0 and I = 0 statistical
ensembles.

Fig. 1. The ratios R0 and R± (a) and the scaled variances ω0 and ω± (b) in the CE with Q = 0

(dashed lines) and in the ensemble with I = 0 (solid lines)

Note that R0 = R± = 1 in the GCE. In the CE, RQ
0 = 1; i.e., the mean number of neutral

pions is not affected by the charge conservation law. The mean number of charged pions is
suppressed in the CE, RQ

± < 1 [8]. The behavior in the statistical ensemble with I = 0 differs
from that in the CE with Q = 0. The pion mean numbers are the same for all charge pion
states π0, π+, and π−. The suppression of these pion multiplicities at I = 0 is stronger than
that for π− or π+ in the CE with Q = 0: RI

0 = RI
± < RQ

± < RQ
0 = 1.

One can see that Rj → 1 at z → ∞ for all j = 0, +,− in both Q = 0 and I = 0 statistical
ensembles. Thus, the suppression of the mean numbers of charged and neutral pions is the
ˇnite volume effect. At small z: RQ

±
∼= z, RI

0 = RI
±
∼= z/3.

The second derivatives in Eq. (6) can be calculated using the partition functions (1),
(2), and (5) for different statistical ensembles. The scaled variances ωj and correlation
coefˇcients ρij ,

ωj ≡
〈N2

j 〉 − 〈Nj〉2

〈Nj〉
, ρij ≡ 〈NiNj〉 − 〈Ni〉〈Nj〉√

ωiωj〈Ni〉〈Nj〉
, (7)

deˇne the main characteristics of the pion multiplicity distributions. As seen from Fig. 1,
the isospin conservation with I = 0 gives the same pion number �uctuations as the CE with
Q = 0, ωI

0 → 1 and ωI
± → 1/2, at z → ∞.
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However, the results for ˇnite systems are rather different. In the CE with Q = 0 the
�uctuations of neutral particles are the same as in the GCE, ωQ

0 = 1. The scaled variance ωQ
±

in the CE with Q = 0 was calculated in [7]. At z � 1 one ˇnds: ωQ
±

∼= 1 − z2/2 and
ωI

0
∼= 2 − z/2, ωI

±
∼= 1 − z2/30.

There are no correlations between the numbers of π0, π+, π− in the GCE. All correlation
coefˇcients deˇned by Eq. (7) are equal to zero, ρ0+ = ρ0− = ρ+− = 0. The charge is exactly
conserved in the Q = 0 and I = 0 statistical ensembles. This brings the strongest correlations
between the numbers of π+ and π−, i.e., ρ+− = 1, and this means equal numbers N+ and N−
in each microscopic state of the system. The correlations between the numbers of π0 and π±

are absent in the CE with Q = 0, but exist in the statistical ensemble with I = 0. The
correlation coefˇcient ρI

0± at I = 0 has the maximal value ρI
0± ≈ 0.19 at z ≈ 1 and goes to

zero at z → ∞.
Due to the exact charge conservation, negative and positive pions may appear only as

π+π+ pairs. For Nch ≡ N+ + N−, the scaled variance is then two times larger than that for
positive (negative) pions ωQ

ch = 2ωQ
− = 2ωQ

+ . The same relation, ωch = 2ω±, is also valid
at I = 0.

The role of Bose effects for the �uctuations in the CE was considered in [11]. A gene-
ralization of Eq. (5) for Bose statistics gives the following expression:

ZBose
I=0 =

1
8π2

2π∫
0

dα

2π∫
0

dγ

π∫
0

dβ sin β ×

× exp

[ ∞∑
n=1

zn

n

(
λn

0 cosn β +
(

1 + cosβ

2

)n

(λn
+ein(α+γ) + λn

−e−in(α+γ))
)]

, (8)

where zn = V Tm2K2 (nm/T ) /(2π2n). The Boltzmann approximation corresponds to the
ˇrst term n = 1 in the sum in Eq. (8). In the case of quantum statistics, the partition function
depends not only on the one particle partition function z, but additionally on the value of m/T .
Bose statistics makes the pion number �uctuations larger. These effects are always stronger
for smaller values of the m/T ratio. For m/T → 0 we ˇnd ωI

0
∼= 2.26 at z → 0, and

ωI
0
∼= 1.368 at z → ∞. The corresponding results for the charged particles are the following:

ωI
± = 1 at z → 0, and ωI

±
∼= 0.684 at z → ∞. The results for z → ∞ coincide with those in

the canonical ensemble with Q = 0.
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