ВРЕМЯПРОЕКЦИОННАЯ КАМЕРА ДЛЯ ЭКСПЕРИМЕНТА РЕN

В. А. Баранов^{*a*}, М. А. Батурицкий^{*b*}, А. Ван дер Шааф^{*e*}, А. С. Коренченко^{*a*}, С. М. Коренченко^{*a*}, Н. П. Кравчук^{*a*}, Н. А. Кучинский^{*a*1}, П. Робманн^{*b*}, В. В. Сидоркин^{*a*}, В. С. Смирнов^{*a*}, Н. В. Хомутов^{*a*}, С. Н. Шкаровский^{*a*}

^{*а*} Объединенный институт ядерных исследований, Дубна ^{*б*} Национальный научно-образовательный центр физики высоких энергий и частиц Белорусского государственного университета, Минск ^{*в*} Цюрихский университет, Цюрих, Швейцария

В Институте им. П. Шеррера (PSI, Швейцария) на спектрометре PIBETA завершен набор статистики относительной вероятности распада $\pi^+ \rightarrow e^+ \nu$. С целью регистрации частиц в пучке пионов специально разработана и создана миниатюрная времяпроекционная камера (mTPC). Количество вещества камеры на пути частиц составляет $14 \cdot 10^{-3}$ г/см². Камера успешно проработала в течение годового сеанса. Приводятся конструкция камеры и ее характеристики.

The PEN collaboration carries out precision measurements of the $\pi^+ \rightarrow e^+ \nu$ decay branching ratio at the Paul Scherrer Institute (PSI, Switzerland). A special mini time-projection chamber (mTPC) has been developed for registrations of particles in the pion beam. The chamber contains $14 \cdot 10^{-3}$ g/cm² of matter on the particle path. The chamber was successfully used during one-year-long run. Design and characteristics of the mTPC are described.

PACS: 29.40.Gx

Коллаборация PEN проводит в Институте им. П. Шеррера (PSI, Швейцария) прецизионное измерение относительной вероятности распада $\pi^+ \rightarrow e^+ \nu$ [1] с целью достижения точности не хуже $5 \cdot 10^{-4}$. В настоящее время точность измерения относительной вероятности распада в 40 раз хуже теоретических вычислений [2, 3]. Хорошее теоретическое понимание распада $\pi^+ \rightarrow e^+ \nu$ делает его изучение наиболее предпочтительным для определения параметров новых физических моделей [4] за пределами стандартной модели электрослабых взаимодействий.

Измерения ведутся на спектрометре PIBETA [5], прошедшем модернизацию к данному эксперименту, заключающуюся в использовании новой регистрирующей электроники в стандарте VME, новой мишени с 10-см воздушным световодом и пучковой минивремяпроекционной камеры (mTPC).

Схема центральной части спектрометра показана на рис. 1. Пучок положительных пионов с импульсом 65-80 МэВ/с теряет часть энергии в активном замедлителе (AD) и

¹E-mail: kuchinski@jinr.ru

Рис. 1. Схема центральной части спектрометра PIBETA, использовавшейся в сеансе 2010 г.: активные замедлитель (AD) и мишень (AT), mTPC — мини-времяпроекционная камера. Эти пуч-ковые детекторы окружены цилиндрическими многопроволочными пропорциональными камерами (MWPC1,2), двадцатисегментным пластиковым годоскопом с двусторонним считыванием (PV) и сферическим калориметром. Апертура 240-элементного калориметра на основе чистого CsI (12RL) показана штрихпунктирными линиями

останавливается в активной мишени (АТ). Импульсы в мишени от остановки пиона и частиц после его распада регистрируются ФЭУ через цилиндрический воздушный световод длиной 10 см. Форма импульсов с мишени оцифровывается с частотой 2 ГГц, что позволяет разделять распады $\pi^+ \to e^+ \nu$ и $\pi^+ \to \mu^+ \to e^+$ в мишени. С другой стороны, mTPC, годоскоп (PV), многопроволочные цилиндрические пропорциональные камеры и CsI (чистый)-калориметр дают возможность восстановить полную геометрию события.

Мини-времяпроекционная камера (mTPC) специально разработана для данного эксперимента. Она дает возможность определять траекторию пиона перед мишенью, что позволяет:

— вести мониторинг распределения остановок π^+ и μ^+ в мишени, что необходимо для вычисления аксептанса детектора;

— восстанавливать вершины распада пиона в активной мишени и проводить коррекцию потерь энергии π^+ , μ^+ и e^+ с учетом неоднородности светосбора в активной мишени;

— восстанавливать длины треков e^+ в мишени для определения потерь энергии e^+ для каждого отдельного события;

— исключать события с π^+ и μ^+ , которые распадаются на лету.

В сеансе 2009 г. mTPC располагалась перед мишенью вне апертуры калориметра. Оптимальное положение mTPC в эксперименте — приближение ее к мишени. Это позволяет максимально исключать события с распадами пионов на лету между активным замедлителем и мишенью, приводящими к ошибкам в измерениях. При этом камера перекрывает часть апертуры калориметра, что требует, чтобы ее конструкция была про-

Времяпроекционная камера для эксперимента PEN 279

Рис. 2. Фотография mTPC на испытательном стенде. Пропорциональная камера расположена в верхней части mTPC. Видны электроды, формирующие дрейфовое поле

Рис. 3. Моделированное программой GARFIELD электрическое поле mTPC в габаритах детектора: a1–a4 — анодные проволочки (под напряжением HV_{анод}); c1– c7 — полеформирующие электроды; HV_{дрейф} — электрод, на который подается напряжение дрейфа. Внешние габариты mTPC $56 \times 50 \times 51$ мм. Серым цветом показаны детали из пенопласта плотностью 0,1–0,2 г/см³

зрачной. Такой вариант максимально облегченной камеры был сделан к ceancy 2010 г. Это позволило приблизить mTPC вплотную к мишени (рис. 1).

Поскольку полученная точность для обеих камер идентична, ниже приводится подробное описание только камеры, использовавшейся в ceance 2010 г.

Внешние габариты камеры $56 \times 50 \times 51$ мм определяются размерами центральной части детектора РІВЕТА. Длина дрейфового промежутка и анодной проволочки 40 мм. Камера изготовлена из пенопласта плотностью 0,1–0,2 г/см³. Максимальная толщина конструктивных элементов 4 мм. Для уменьшения количества вещества в стенках камеры вырезаны окна, заклеенные лавсановой пленкой, толщиной 20 мкм (рис. 2).

Однородность электрического поля в дрейфовом объеме mTPC обеспечивается высоковольтным электродом $HV_{дрей\phi}$ и семью полеформирующими электродами, которые представляют собой расположенные по периметру дрейфового объема полоски из алюминиевой фольги шириной 0,5 мм и толщиной 5 мкм. Потенциалы на полеформирующих электродах задаются с делителем между высоковольтным электродом $HV_{дрей\phi}$ и землей. Анодные проволочки выполнены из нихромовой проволоки (NiCr) диаметром 12 мкм с линейным сопротивлением 60 ± 1 Ом/см. Проволочки расположены перпендикулярно пучку с шагом 12 мм. Камера продувалась газовой смесью CH_4 (10%) + Ar (90%) при нормальном давлении.

На рис. 3 показаны результаты моделирования с помощью программы GARFIELD электрического поля в дрейфовом объеме mTPC. Также на этом рисунке приведены габариты камеры и расположение соответствующих электродов.

Координаты трека прошедшей через камеру частицы определяются:

- X методом деления тока от лавины на сопротивлении анодной проволочки;
- *Y* по времени дрейфа электронов от трека до анодной проволочки;
- Z по положению сработавшей проволочки относительно мишени.

Сигналы с двух сторон анодных проволочек снимаются через высоковольтные разделительные конденсаторы и усиливаются восьмиканальным усилителем AMPL-8.3 [6] с коэффициентом усиления 70 мВ/мкА. Далее через 6-м кабель сигналы поступали на блок CAEN V1720, где оцифровывались с частотой дискретизации 250 МГц. Необходимо отметить, что использование оцифровывания формы импульса позволяет получить как информацию о времени дрейфа, так и соотношение сигналов с разных сторон проволочек, определяющее положение лавины вдоль проволочки.

Метод определения координаты по делению токов на анодной проволочке был использован как наиболее подходящий для нашего детектора [7, 8]. Это связано с ограниченностью пространства в центральной области спектрометра и возможностью использования одного комплекта электроники для определения X-Y-координат трека. Точность определения координаты таким методом определяется ошибкой в измерении заряда, которая зависит от места лавины вдоль проволочки и приведенного к входу шума усилителей. Полученная для mTPC точность составила $\sigma_x \sim 1,3$ мм и $\sigma_y \sim 0,35$ мм [9].

Рис. 4–6 иллюстрируют работу mTPC. Так, на рис. 4 показаны события с одним и двумя пионами в mTPC и соответствующие им сигналы в мишени. На рис. 5 представлено распределение по количеству треков, зарегистрированных в одном событии. Трековая неэффективность, когда число точек на треке меньше 3, примерно $5 \cdot 10^{-3}$.

Итак, в сеансах 2009–2010 гг. камеры проработали более восьми месяцев. Остановлено $3,94 \cdot 10^{11}$ пионов и зарегистрировано $2,12 \cdot 10^7$ триггеров, что соответствует статистической неопределенности $\sim 5 \cdot 10^{-5}$. В настоящее время ведется обработка экспериментальных данных. Набранная статистика в эксперименте PEN удваивает статистику

Рис. 4. Оцифрованные сигналы с mTPC и мишени для типичных событий с одним (*a*) и двумя (*б*) треками пионов. Два верхних ряда — сигналы с противоположных сторон четырех анодных проволочек mTPC. Нижний ряд — сигналы в мишени, соответствующие остановкам пионов и позитронам от их распада. Сигналы с одного конца анодных проволочек даны с постоянным временным сдвигом. Для двухтрекового события время между пионами — около 150 нс

Рис. 5. Гистограмма множественности треков, реконструированных в тТРС

Рис. 6. Проекция треков пучковых пионов на мишень. Пунктирной окружностью показан размер мишени (диаметр 30 мм). Координата X из деления токов $\sigma_x < 1,3$ мм, координата Y по времени дрейфа $\sigma_y < 0.35$ мм

для радиационных распадов пионов и мюонов, приводя к дальнейшему улучшению точности их измерений в предыдущих экспериментах.

Работа выполнена при поддержке гранта РФФИ 08-02-00652а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pocanic D. et al. Precise Measurement of the $\pi^+ \rightarrow e^+ \nu$ Branching Ratio. Proposal for an Experiment at PSI R-05-01. 2005.
- Britton D. I. et al. // Phys. Rev. Lett. 1992. V. 68. P. 3000; Czapek G. et al. // Phys. Rev. Lett. 1993. V. 70. P. 17.

- 282 Баранов В.А. и др.
- Marciano W. J., Sirlin A. // Phys. Rev. Lett. 1993. V. 71. P. 3629; Decker R., Finkemeier M. // Nucl. Phys. B. 1995. V. 438. P. 17; Cirigliano V., Rosell I. // Phys. Rev. Lett. 2007. V. 99. P. 231801.
- 4. Campbell Bruce A., Ismail Ahmed. CERN-PH-TH-2008-212. 2008.
- 5. Frlez E. et al. // Nucl. Instr. Meth. A. 2004. V. 526. P. 300-347.
- 6. Alexeev G. D. et al. // Nucl. Instr. Meth. A. 2001. V. 462. P. 494-505.
- 7. Radeka V. // IEEE Trans. on NS. 1978. NS-23, 25, 1.
- 8. Bird F. et al. SLAC-PUB-3790. 1985.
- 9. Alonzi P. // April APS Meeting. http://phys.virginia.edu/talks/index.html

Получено 30 июня 2011 г.