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HIGGS MODELS
I. P. Ivanov 1

University of Liege, Liege, Belgium

This lecture presented at the Baikal Summer School on Physics of Elementary Particles and Astro-
physics in 2011 is devoted to the Higgs mechanism of the electroweak symmetry breaking within the
Standard Model and in some models beyond it.
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1. HIGGS SECTOR OF THE STANDARD MODEL

The Standard Model (SM) is a gauge theory of electromagnetic, weak and strong interac-
tions of fundamental matter ˇelds: quarks and leptons. It has a few cornerstone concepts and
leads to a huge amount of predictions, vast majority of which have been clearly conˇrmed in
experiment.

All fundamental forces of the SM follow from the powerful gauge principle: the matter
ˇelds have internal degrees of freedom, but the physical observables are invariant under local
transformations in this internal space performed. The word ®local¯ means here that these
transformations are performed at each space-time point independently. It contrasts with the
global transformation, which is applied simultaneously to the ˇelds at all space-time points.
The group of internal transformations generating a given force is called the gauge group, and
the gauge group of the SM is SU(3)c × SU(2)L × U(1)Y .

Within SM, the electromagnetic and the weak interactions become two faces of the same
coin: the electroweak interaction with the group SU(2)L × U(1)Y , while the SU(3)c group
corresponds to the strong color force. Although the Lagrangian of the SM is electroweak-
symmetric, this symmetry is not manifest in our world, and therefore it must be broken. The
Higgs mechanism, which postulates existence of fundamental scalar ˇelds, is the most popular
construction that naturally leads to the electroweak symmetry breaking (EWSB) keeping the
theory renormalizable. Depending on the exact content of the scalar sector, one speaks of the
minimal Higgs mechanism (the one used in the pure Standard Model) or non-minimal Higgs
mechanisms. In the ˇrst half of these lectures we outline the minimal Higgs mechanism,
while in the second half we'll brie
y mention some non-minimal Higgs models. For further
introductory reading on these subjects, one can refer to books [1, 2], lectures (e.g., [3])
and reviews (e.g., [4]).

1E-mail: Igor.Ivanov@ulg.ac.be
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1.1. Abelian Higgs Model. In this pedagogical introduction, we start with the so-called
Abelian Higgs model, which is basically the spontaneously broken quantum electrodynamics
(QED). It illustrates the main idea how the masses of the gauge bosons and chiral fermions
can arise but avoids the mathematical complications of the non-Abelian gauge theories.

Consider the QED Lagrangian:

LQED = −1
4
FμνFμν + ψ̄(iDμγμ − m)ψ, (1)

where Dμ = ∂μ + ieAμ is the covariant derivative and Fμν = ∂μAν − ∂νAμ. The ˇeld ψ(x)
describes the (Dirac) electron with charge −1. This theory has the U(1) gauge symmetry: the
Lagrangian is invariant under the local phase rotations of the electron ˇeld and simultaneous
shifts of the gauge (that is, ®compensating¯) ˇeld:

ψ → e−iα(x)ψ, (2)

Aμ → Aμ +
1
e
∂μα(x). (3)

Quantization of the electromagnetic ˇeld Aμ leads to the massless photon.
Suppose we want to construct the QED with a massive photon. Adding the mass term

by hand

−Lmass =
m2

A

2
AμAμ (4)

does not work because this term is not gauge invariant. The (Abelian) Higgs mechanism
is the way out in this situation. In this model we introduce a complex scalar ˇeld Φ with
charge q which feels the gauge interaction and couples to itself:

L = LQED + (DμΦ)∗(DμΦ) − V (Φ), (5)

where Dμ = ∂μ − iqAμ when it acts on the Higgs ˇeld and the potential is

V (Φ) = −μ2|Φ|2 + λ|Φ|4, μ2, λ > 0. (6)

Let us parametrize the complex ˇeld Φ as

Φ =
1√
2
φ(x) eiξ(x), (7)

where φ(x) and ξ(x) are real scalar ˇelds. The scalar potential then simpliˇes to

V (Φ) → V (φ) = −μ2

2
φ2 +

λ

4
φ4. (8)

The ground state of the model (the vacuum) corresponds to

φ(x) = φ0 ≡
√

μ2

λ
. (9)

Note that the second ˇeld, ξ(x), disappears from the scalar potential. However, it is still
present in the kinetic part of the scalar Lagrangian |DμΦ|2:

DμΦ =
1√
2

[∂μφ + i(∂μξ − qAμ)φ] eiξ(x). (10)
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But since we had the gauge symmetry in the model, we have a possibility to gauge away
the ˇeld ξ(x) by choosing α(x) = eξ(x)/q. In this case the ˇeld ξ(x) disappears from the
Lagrangian completely:

|DμΦ|2 =
1
2
(∂μφ)2 +

1
2
q2φ2AμAμ. (11)

Note however that this term also generates the quartic interaction φ2(x)A2(x).
If the vacuum corresponds to the homogeneous ˇeld 〈φ〉 = φ0, then for perturbative

ˇeld theory one should expand the ˇeld near this point: φ(x) = φ0 + h(x). This expansion
generates the following Higgs Lagrangian:

−LHiggs = λφ2
0h

2 + λφ0h
3 +

λ

4
h4, (12)

which gives the mass of the physical Higgs boson m2
h = 2λφ2

0 = 2μ2 as well as the cubic
and quartic self-interaction terms. The same expansion in (11) generates the mass of the
®photon¯, mA = |q|φ0 as well as the hAμAμ and hhAμAμ interactions.

Let us now take step back and see what role the gauge symmetry played in this mechanism.
If the original Lagrangian (1) had no gauge symmetry (no covariant derivative in the

interaction term), there would be no freedom to ®gauge away¯ the ˇeld ξ(x). We would still
have the global U(1)-symmetry with constant phase shift α. We could still spontaneously
break the global U(1)-symmetry by selecting the real vacuum expectation value φ0, but we
would not be able to make Φ(x) real everywhere. In this case the small 
uctuations of the
Higgs ˇeld around the vacuum can be parametrized as

Φ(x) ≈ 1√
2
[φ0 + h(x) + ig(x)], g(x) ≡ φ0ξ(x). (13)

We see that the ˇeld g(x) is a dynamical ˇeld because it does not disappear from the
kinetic term:

|∂μΦ|2 =
1
2
(∂μh)2 +

1
2
(∂μg)2 + . . . (14)

but it is still absent in the potential. Therefore, the mass of the quanta of the ˇeld g(x) is
zero, and this is the Goldstone boson. In fact, such massless bosons appear always as a result
of spontaneous breaking of a global continuous symmetry, and this statement is the essence
of the Goldstone theorem.

After this overlook we can formulate how the Higgs mechanism works: in a gauge theory,
the Goldstone boson disappears and re-emerges as a longitudinal degree of freedom of the
gauge boson, which becomes massive.

Let us now consider brie
y the situation in the fermionic sector. In the toy model we
constructed, we used the Dirac spinor ψ to describe the electron ˇeld. Because of that it was
possible to introduce the fermion mass by hand: mψ̄ψ is U(1)-gauge invariant. Alternatively,
we can write this term via chiral fermionic ˇelds, ψL and ψR:

mψ̄ψ = m(ψ̄LψR + ψ̄RψL), (15)

and we see that this term in fact mixes ψL and ψR. This mixing does not cause any problem
in a theory with vector-like interaction because both chiral ˇelds have the same quantum
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numbers. But in the full SM it will not be the case. So, in order to mimic the SM case, let
us assume that there is no mixing of ψL and ψR in the Lagrangian and show how the Higgs
mechanism solves the problem of the fermion mass. To do this, we introduce the Yukawa
interaction between scalars and the fermions:

Lf = yψψ̄LΦψR + h.c., (16)

where yψ is a dimensionless coupling constant and the Higgs ˇeld must carry the quantum
numbers balancing the quantum numbers of ψL and ψR. After the spontaneous breaking of
the U(1)-symmetry, this term becomes

Lf = mψψ̄LψR +
√

2mψ

φ0
ψ̄LψRh + h.c., (17)

where the fermion gains mass mψ = yψφ0/
√

2 and, in addition, couples to the Higgs boson
with a coefˇcient proportional to its mass. This is one of the hallmark features of the Higgs
mechanism.

1.2. Electroweak Interactions. The electroweak interactions of the SM are based on the
non-Abelian gauge group SU(2)L × U(1)Y . The three gauge bosons A

(i)
μ , i = 1, 2, 3, for

the SU(2)L group and one gauge boson Bμ for U(1)Y are all massless. The left and right
chiral fermions interact with the gauge bosons in different ways. The left fermions ψL are
postulated to be SU(2)-doublets, for example, L = (νL, eL)T , and therefore interact with

A
(i)
μ , while the right fermions ψR are singlets and do not feel the SU(2)-interactions. The

Higgs ˇeld, by construction, mixes the left and right chiral fermions (ψ̄LΦψR); therefore, it
must be an SU(2)-doublet itself: Φ = (φ+, φ0)T .

With all these ˇelds, the electroweak Lagrangian (written for simplicity for a single-lepton
generation made of an electron and neutrino) takes the form

L = −1
2
Gi

μνGμν,i − 1
4
FμνFμν + |DμΦ|2 − V (Φ)+

+ iL̄DμγμL + iēRDμγμeR + iν̄RDμγμνR − fe(L̄ΦeR + ēRΦ̃L),

where in the last term Φ̃ = iσ2Φ∗. The covariant derivative can be written generically as

Dμ = ∂μ − igT iAi
μ − ig′

Y

2
Bμ,

where g and g′ are gauge coupling constants, T i are SU(2) generators (T i = σi/2) and Y is
a quantum number called the hypercharge. For a given gauge group representation it can be
calculated as twice the average electric charge of the particles in this representation. Finally,
tensors Gi

μν and Fμν are the ˇeld strengths for the SU(2) and U(1) groups, respectively.
The spontaneuous symmetry breaking proceeds essentially as before. The Higgs potential

V (Φ) is constructed in such a way that its vacuum expectation value (v.e.v.) of the lower
(=neutral) component of the Higgs doublet is non-zero and can be taken real:

〈Φ〉 =
1√
2

(
0
v

)
. (18)
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This v.e.v. has deˇnite (and non-zero!) values of hypercharge Y = 1 and of the third
component of the weak isospin: T 3 = −1/2. Colloquially, one can say that the vacuum does
not conserve any of the electroweak charges separately. But the combination Q ≡ T 3+Y/2 is
zero for 〈Φ〉, which means that this quantity is conserved. Therefore, one says that electroweak
symmetry group SU(2)L × U(1)Y is broken not completely, but down to the U(1)Q. Later
we will see that this quantum number Q is the electric charge (in the units of |e|).

Let us now see what happens to the gauge sector of the model. When (18) is inserted
into the Higgs kinetic term, we get

DμΦ =
(
∂μ − i

2
gσiAi

μ − i

2
g′Bμ

)
Φ →

→ i

2
√

2
(gA3

μ − g′Bμ)
(

0
v

)
− i

2
√

2
g(A1

μ − iA2
μ)

(
v
0

)
,

|DμΦ|2 → v2

8
(gA3

μ − g′Bμ)2 +
g2v2

8
(A1

μ − iA2
μ)2 =

ḡ2v2

8
ZμZμ +

g2v2

4
W−

μ W+μ.

(19)

Here we introduced ḡ2 ≡ g2 + g′2 and the new ˇelds which correspond to the weak vector
bosons:

Zμ =
gA3

μ − g′Bμ

ḡ
, W±

μ =
A1

μ + iA2
μ√

2
. (20)

The key feature is that they are massive:

mZ =
ḡv

2
, mW =

gv

2
. (21)

Note that the diagonalization of the mass matrix was achieved by rotating between the ˇelds
A3

μ and Bμ to produce Zμ in (20) and the orthogonal combination Aμ = (g′A3
μ + gBμ)/ḡ,

which is identiˇed with the photon. The angle of the rotation is called the Weinberg angle
θW . It is deˇned in terms of coupling constants g/ḡ = cos θW ≡ cW , g′/ḡ = sin θW ≡ sW .
It is also shown below that gg′/ḡ = |e|, the elementary electric charge. Note also that the
photon ˇeld does not appear in (19), which means that the photon remains massless.

The electroweak model based on the Higgs doublet leads to an important prediction:
mW /mZ = cos θW . This relation would be different in non-doublet versions of the Higgs
mechanism or in many other theories of the electroweak symmetry breaking that goes signif-
icantly beyond the SM. Its experimental veriˇcation is, therefore, an important check of the
model and, at the same time, a possible method to search for New Physics. This relation has
been conˇrmed in experiment with a very high accuracy.

It remains to show how the usual vector-like QED appears from the chiral electroweak
theory. For this, we need to check the coefˇcient in front of the electronÄphoton interaction.
This part of the Lagrangian is

i

2
(Yd − 1) ḡcW sW ēLγμAμeL +

i

2
YS ḡcW sW ēRγμAμeR. (22)

The hypercharge for the electronÄneutrino left doublet Yd = −1, while for the right electron
singlet it is Ys = −2. Therefore, both terms in this interaction have equal coefˇcients, and
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they can be grouped into

iQ|e|ēγμAμe, Q = −1, |e| = ḡcW sW =
gg′

ḡ
. (23)

Let us ˇnally see what happens to the Higgs ˇelds. A doublet of complex ˇelds has four
degrees of freedom, and the excitations around the minimum point (18) can be represented as

Φ = 〈Φ〉 +
1√
2

(
φ1 + iφ2

h + iφ3

)
. (24)

Just as it was with the ˇeld ξ(x) in the Abelian Higgs model, here three degrees of freedom,
namely, φi, i = 1, 2, 3, correspond to the 
at directions of the potential and can be ®gauged
away¯. The only remaining physical scalar boson is the Higgs boson h. In the words of the
Goldstone theorem, three disappearing massless scalars re-appear as the longitudinal degrees
of freedom of the W± and Z bosons.

1.3. Constraints on the Higgs Sector. Higgs phenomenology in the Standard Model
(notably, production and decay channels) is a huge subject on its own. We will not touch on
it in these lectures. However, we will mention two purely theoretical restrictions on properties
of the SM Higgs sector.

The Higgs potential of the Standard Model contains one parameter that is not constrained
by the model itself: the mass of the Higgs boson (or, alternatively, the quartic coupling λ of
the Higgs self-interaction). Direct searches at the high-energy colliders, LEP, Tevatron and
now the LHC, have not yet revealed the Higgs boson (although by the time these lectures
have been printed, the LHC might have already announced the ˇrst hints of the Higgs boson).
However, the structure of the electroweak theory itself forbids the Higgs boson to be too light
or too heavy.

One of the important constraints is called perturbative unitarity. Consider a high-energy
two-particle elastic scattering process. Unitarity of the scattering matrix, which encodes the
conservation of the 
ux, implies that the scattering amplitude cannot be arbitrarily large.
Using quantum mechanical notation, we write the scattering amplitude as the partial wave
expansion:

A = 16π

∞∑
�=0

(2 + 1)P�(cos θ)a�, a� =
e2iδ� − 1

2i
. (25)

It is clear that Re a� � 1/2. Therefore, if any tree-level calculation gives the partial wave
|a�| > 1/2 for any  it means that very strong higher order corrections are to be expected. The
tree-level (= lowest-order term of the perturbative expansion) calculation is then unreliable,
and the perturbative treatment becomes simply misleading. The dynamics of scattering is
completely modiˇed with respect to the naive perturbative expectation. So, we need to check
that the tree-level scattering amplitudes do not shoot up in the EW theory.

The most dangerous is scattering of longitudinally polarized W and Z bosons, e.g.,
W+

L W−
L → W+

L W−
L . The reason is that the longitudinal polarization vector of a massive

vector boson behaves like eμ
L = (p, 0, 0, E)/M . As a result, the scattering amplitude, which

contains sufˇciently many eL's, rises with energy and, at some energy, it deˇnitely overshoots
the perturbative unitarity constraint.
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The Higgs mechanism tames this rise. The amplitude stays ˇnite even at s → ∞,
A = −2m2

h/v2, but it can still be large. Requiring that |A| < 8π gives

mh < 2
√

πv ≈ 870 GeV.

A more accurate coupled-channel analysis lowers this bound to 710 GeV. One can therefore
conclude that if the LHC does not ˇnd the Higgs boson with mass up to 700 GeV, then there
is deˇnitely some physics beyond the Standard Model. Even if there are no other particles,
the dynamics of the electroweak sector is very different from the expectations of the SM.

Even stronger constraints arise if one tries to understand the ultraviolet (small-distance)
behavior of the theory. It is known in quantum ˇeld theory that loop corrections usually induce
renormalization of the bare quantities introduced in the Lagrangian. The physical observables,
such as masses and charges, etc. change with the observation scale. For example, if one
studies quantities in collision of highly virtual particles with virtuality Q2 (which corresponds
to distances ∼ 1/Q), then all quantities will (slowly) change with the Q2 rise.

In the Higgs sector, the loop corrections affect the value of the quartic Higgs self-
interaction parameter λ. An explicit calculation shows that if λ is sufˇciently high (the
Higgs boson is heavy) at the scale of Q ∼ 1 TeV, then it will grow further with Q2 rise.
This evolution (known as the renormalization-group 
ow) is approximately described by the
following equation:

dλ

d log Q2
≈ 3λ2

2π
. (26)

So, sooner or later λ will overshoot the perturbativity constraint, and the theory must be mod-
iˇed. On the other hand, if λ is too small (the Higgs boson is too light), then the top-quark
loops will drive λ down. Then, at certain scale λ becomes negative, which means that the po-
tential is not bounded from below anymore. This is known as the vacuum stability constraint.

Summarizing these two restrictions, one can state that if we insist that the Standard Model
remains valid (and not modiˇed!) up to the energy scale Λ, the Higgs boson cannot be
too light nor too heavy. It is also obvious that the larger Λ, the narrower is the allowed
region of the Higgs boson masses. This region is shown in ˇgure. When discussing this

Perturbative unitarity (upper curves) and vacuum stability (lower curves) constraints on the mass of the

Standard Model Higgs boson
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plot, physicists often mention the ®nightmare scenario¯: if it turns out experimentally that
130 < mh < 180 GeV and no indication of physics beyond the Standard Model is found, then
it will mean that the SM can work even up to the Planck scale. In other words, we would
have no clue on where and what the New Physics is. Certainly, this would be a depressing
situation.

1.4. What Is Spontaneously Broken in EWSB? There is a subtlety in the nature of
electroweak symmetry breaking that is often omitted in discussions of the Higgs mechanism.
This subtlety concerns the question: what exactly is broken spontaneously when we speak
of EWSB?

In 1975 Elitzur proved a theorem [5] which might sound paradoxical after what we learned
in the previous sections: it is impossible to spontaneously break a gauge symmetry. Only
global symmetries can be broken spontaneously. In fact, there is no contradiction here. If we
look back, for example, at the Abelian Higgs model, we see that the gauge symmetry was
removed by hand at that very moment when we adjusted phase α(x) to eliminate the ˇeld ξ(x).
After that, the spontaneous breaking happened only for the phase of the vacuum expectation
value; that is, only the global U(1)-symmetry was actually broken spontaneously.

This observation implies that electroweak symmetry breaking is not really an unavoidable
physical phenomenon that accompanies transition from the ®EW-symmetric phase¯ to the
®Higgs phase¯. We should be able to reformulate the electroweak theory in a way that does
not refer explicitly to breaking of the gauge symmetry.

Consider again the Abelian Higgs model and write down terms quadratic in ˇelds h(x),
g(x) and Aμ(x) in the Higgs phase (with non-zero v.e.v. φ0):

L2 = −1
4
F 2

μν +
1
2
(∂μh)2 − 1

2
m2

hh2 +
q2φ2

0

2

(
Aμ − 1

qφ0
∂μg

)2

. (27)

Let us introduce the gauge invariant ˇeld Bμ:

Bμ ≡ Aμ − 1
qφ0

∂μg, F (A)
μν = ∂μAν − ∂νAμ = F (B)

μν . (28)

Now the quadratic Lagrangian

L2 = −1
4
F 2

μν +
1
2
(∂μh)2 − 1

2
m2

hh2 +
q2φ2

0

2
BμBμ (29)

contains only those degrees of freedom which are explicitly U(1)-gauge invariant. We
see that there is simply no freedom of gauge transformation left in (29). The issue of
(spontaneous) breaking of gauge symmetry becomes redundant, because there is no gauge
symmetry anymore. More details about this remarkable phenomenon can be found in [2,6].

2. SOME FEATURES OF NON-MINIMAL HIGGS SECTORS

When physicists discuss physics beyond the Standard Model, they can actually mean
different things. They can mean, for example, models with new particles (for instance,
with an extra generation of heavy fermions) but with the same minimal Higgs mechanism
as in the SM. Or they can consider the same (matter) particle content as in the SM but
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with a more complicated (non-minimal) Higgs sector. In this section we will consider some
variations of the latter possibility. For a broader review on various non-minimal Higgs
mechanisms, see [4, 7].

2.1. Two-Higgs-Doublet Model. The two-Higgs-doublet model (2HDM) consists in intro-
ducing not one but two Higgs doublets with identical quantum numbers: φi = (φ+

i , φ0
i )

T ,
i = 1, 2. These doublets interact with the gauge bosons, |Dμφi|2, with fermions via
the Yukawa-type interactions, and they self-interact via the Higgs potential constructed
from (φ†

i φj). This model was introduced in 1973 and turned out to be quite rich, so that
it is still actively explored. Two main physics motivations of 2HDM are its resemblance to
the scalar sector of the MSSM (minimal supersymmetric extension of the Standard Model),
and the possibility to induce CP -violation purely within the Higgs sector. This model is
also attractive for cosmologists, as it can easily generate dark matter candidates in the Higgs
sector and multiple strong thermal phase transitions. For a detailed account of theoretical and
phenomenological aspects of 2HDM, see [8].

The main distinctive phenomenological feature of this model is presence of several physical
Higgs bosons. The basic counting shows that two doublets have 8 degrees of freedom, and
after EWSB there remains ˇve physics scalars: three neutral h1, h2, h3 and two charged, H±.
Often the neutral Higgs bosons come with a deˇnite CP -parity, and in this case one speaks
of two scalars, h and H , and one pseudoscalar, A.

In order to see explicitly how the EWSB proceeds in this model, let us consider a simple
yet illustrative version of the 2HDM potential:

V = −μ2
1(φ

†
1φ1) − μ2

2(φ
†
2φ2) + λ(φ†

1φ1)2 + λ(φ†
2φ2)2+

+ λ3(φ
†
1φ1)(φ

†
2φ2) − λ4(φ

†
1φ2)(φ

†
2φ1) −

λ5

2

[
(φ†

1φ2)2 + (φ†
2φ1)2

]
.

We search for the minimum in the form

〈φ1〉 =
1√
2

(
0
v1

)
, 〈φ2〉 =

1√
2

(
0
v2

)
.

It is useful to introduce the following notation: v2 = v2
1 + v2

2 = (246 GeV)2, v1 = v cosβ,
v2 = v sin β, tanβ = v2/v1. In order to minimize the potential, we ˇrst set derivatives
to zero:

∂V

∂v1
= v1

[
−μ2

1 + λv2
1 + λ345v

2
2

]
= 0,

∂V

∂v2
= v2

[
−μ2

2 + λv2
2 + λ345v

2
1

]
= 0,

where λ345 ≡ λ3 − λ4 − λ5. The second derivatives are

∂2V

∂v2
1

= [· · · ]1 + 2λv2
1 ,

∂2V

∂v2
2

= [· · · ]2 + 2λv2
2 ,

∂2V

∂v1∂v2
= 2λ345v1v2, (30)

where [· · · ]1 and [· · · ]2 denote the expressions in brackets in the previous equations.
Now note that depending on the parameters there exist several possibilities (several

phases): EW-symmetric, when v1 = v2 = 0, ®partially broken¯, when v1 
= 0, v2 = 0
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or vice versa, and ®fully broken¯, when v1, v2 
= 0. Explicit conditions on μ2
1, μ2

2 and λ's
that separate these phases can be easily found.

Let us pick up the last phase (tan β 
= 0,∞). Expanding the Higgs ˇelds around the
minimum

φ1 =

⎛
⎝ w+

1
1√
2
(v1 + h1 + iη1)

⎞
⎠ , φ2 =

⎛
⎝ w+

2
1√
2
(v2 + h2 + iη2)

⎞
⎠

and substituting them in the potential give the following quadratic terms:

V2 = (λ4 + λ5)(v2w
−
1 − v1w

−
2 )(v2w

+
1 − v1w

+
2 )+

+ λ5(v2η1 − v1η2)2 + λv2
1h2

1 + λv2
2h2

2 + 2λ345v1v2h1h2,

= m2
H±H−H+ +

1
2
M2

AA2 +
1
2
m2

hh2 +
1
2
m2

HH2,

where

H+ = sin β w+
1 − cosβ w+

2 , m2
H± = (λ4 + λ5)v2,

A = sin β η1 − cosβ η2, m2
A = λ5v

2,

while h and H are light and heavy linear combinations of h1 and h2. Note that the three
Goldstone ˇelds G± = cosβ w±

1 + sin β w±
2 and G0 = cosβ η1 + sin β η2 disappear in this

quadratic term.
As for the fermionic sector, there are several ways to couple two Higgs doublets to

fermions. For example, only one Higgs doublet (e.g., φ2) couples to all fermions (this model
is known as Type I model); or φ2 couples to all up-type fermions, φ1 couples to down-type
fermions (Type II), etc. The constant in each Yukawa term is adjusted to give the right
mass to the fermions, but the coupling to the Higgs bosons can be enhanced or suppressed
with respect to the SM. This deviation from the SM patterns arises because v.e.v.'s (v1, v2)
and the physical neutral Higgses (h, H) are not aligned. These deviations lead to important
phenomenological properties of all these Higgs bosons.

Let us mention several phenomena that can arise in speciˇc variants of the 2HDM. First,
the model we considered above is CP -conserving. The neutral Higgs bosons have deˇnite
CP -parity and do not mix with each other. However, it is possible to construct a potential
that would induce spontaneous CP -violation in the Higgs sector. Namely, although all the
coefˇcients in the potential are real, the v.e.v. have a non-zero relative phase: v1 = |v1|,
v2 = |v2| exp (iξ). As a result, the neutral Higgs mass matrix contains non-diagonal terms
that mix scalars with pseudoscalars, so that the physical Higgs bosons do not have deˇnite
CP -parity. Such CP -violating 2HDM leads to additional contributions to many CP -sensitive
observables.

Another important feature of a typical 2HDM is the decoupling limit. It refers to a situation
when all the Higgs bosons (H , A, H±) except for one are very heavy, while the lightest
Higgs boson h lies in the ®standard¯ region of 100Ä200 GeV. In this case it turns out that
the properties of h usually resemble very much the properties of the Standard Model Higgs
boson. This is a rather unfortunate situation because if an SM-like Higgs boson is observed
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at the LHC, it would be difˇcult to distinguish the true SM from the models like 2HDM in
the decoupling limit.

It is possible that one of the Higgs ˇelds gets zero v.e.v. but gains mass after EWSB.
This Higgs boson cannot then decay into gauge bosons or other Higgs particles. If it also
decouples from fermions, it becomes stable and can be a natural dark matter candidate. Such
models known as ®Inert doublet models¯ have received much attention [9].

Yet another possibility that can exist in 2HDM is the so-called ®charge-breaking vacuum¯.
It arises when the v.e.v.'s of the two doublets have the form

〈φ1〉 =
1√
2

(
0
v1

)
, 〈φ2〉 =

1√
2

(
u
v2

)

with some non-zero u. In this case the SU(2) × U(1) gauge group breaks down completely,
the photon also becomes massive, and the electric charge is not conserved anymore (neutral
and charged Higgs bosons mix). This type of vacuum, of course, does not correspond to
what we see today, but it is possible that the early Universe evolved through such an exotic
phase when it was cooling down and passed through the electroweak scale [10]. The charge-
breaking and charge-restoring phase transitions might have been sufˇciently violent to leave
some traces in the observable Universe.

We close this discussion by the remark about 2HDM with the most general scalar sector.
When we introduce a model (for example, 2HDM), it is natural to consider it in its most
general formulation and deduce the full list of phenomenological possibilities that can occur
there. In the case of 2HDM, the most general scalar potential with all quadratic and quartic
interactions between φ1 and φ2 contains 14 terms, each carrying its own free parameter. It
turns out that one cannot minimize this potential explicitly with straightforward algebra.

However, in the last few years a number of basis-invariant tools have been developed that
yield a lot of information on the properties of the minima of the potential without explicitly
ˇnding them. The results include the number and coexistence of minima, the symmetries
which can be encoded in the potential and their breaking patterns, and even the full phase
diagram of the model in the tree-level approximation.

It is also interesting to pursue the idea of ®Higgs generations¯ further and consider a model
with N Higgs doublets. Examples include Weinberg's 3HDM [11], Adler's 6HDM [12], the
private Higgs model by Porto and Zee [13] in which each fermion couples to its own Higgs
doublet, etc.

One of the motivations to consider such multi-doublet models is to alleviate the fermion
mass hierarchy problem: the fact that the fermion masses (and therefore the dimensionless
Higgs-fermion coupling constants) span many orders of magnitude without any obvious rea-
son. It turns out, indeed, that in certain multi-doublet models there appears a natural hierarchy
among the v.e.v.'s of several doublets, which can then lead, also quite naturally, to very dif-
ferent fermionic masses. These models are more difˇcult to analyze than 2HDM, but they
are still studied by many groups.

2.2. Extra Singlets. The Higgs ˇelds do not have to be only doublets, but can transform
under any representation of the SU(2) × U(1) gauge group: singlets, triplets, etc. The
only requirement is that they contain a neutral component, which will acquire the vacuum
expectation value. The experimental data, and especially the relation mW /mZ = cos θW

which is tested in experiment with much accuracy, indicate though that the largest Higgs v.e.v.
must come from a doublet. However, additional Higgs bosons can come in any representation.
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In the simplest model of this type, one introduces neutral singlet ˇeld σ in addition to the
usual Higgs doublet φ. Below we give a sketchy description of one such model introduced
in [14] which bears a picturesque name ®Higgs portal into Hidden valley¯.

The main assumption of this model is that there exists a ®hidden valley¯ in the particle
physics landscape: a whole sector of new matter and new gauge ˇelds which interact with
each other, but which are ®blind¯ to the interactions of the Standard Model. These new
particles, of course, are not directly observable because our detectors are made of ®normal¯
particles. Our matter and gauge ˇelds, in turn, do not participate in the new interactions.

Suppose we want to describe both sectors of the reality in a single renormalizable quantum
ˇeld theoretic model. We write the Lagrangian as

L = Lour + Lhidden + Llink, (31)

where Llink describes the interaction terms that links our world with the hidden valley. It
turns out that if we insist on the renormalizability of the interaction term, we have very little
freedom in constructing Llink: apart from gravity and kinetic mixing, the only interaction can
occur via the quadratic Higgs term. Indeed, a renormalizable theory must contain operators
of dimension not higher than 4. All terms in the SM Lagrangian have dimension exactly
equal to 4 (and therefore no additional ˇeld can be put there!) except for one: −μ2(φ†φ).
The operator here has dimension 2, and it is accompanied by a dimensional coupling μ2. One
can say that this is the only term in the SM that bears an ®exterior¯ mass scale explicitly
introduced in the model.

The idea of the ®Higgs portal¯ consists in the assumption that μ is not a ˇxed mass scale
but is the vacuum expectation value of the new ®hidden¯ scalar σ:

η(φ†φ)〈σ2〉 ≡ −μ2(φ†φ). (32)

This new ˇeld σ must be an EW-singlet, but it can transform non-trivially under the ®hidden¯
interactions, and this explains why only σ2 term appears in the interaction. In a simplest
model, such an interact term after EWSB leads to interactions between the usual Higgs
boson h and ®hidden¯ scalar hσ:

η(φ†φ)σ2 → η(2vh + h2)(2〈σ〉hσ + h2
σ). (33)

Since 〈σ〉 
= 0, there opens up the possibility of the direct mixing h ↔ hσ and of the decay
h(∗) → hσhσ with a very direct collider signature: gg → h(∗) → hσ(hσ) with a subsequent
decay into hidden valley particles (here h(∗) denotes either the real or highly virtual Higgs
boson). These particles are not directly seen by detectors, but the overall kinematical balance
will allow us to observe a large missing transverse momentum. This simple model illustrates
an important statement: the Higgs boson physics is interesting not only on its own but also
as a window into possible New Physics.

2.3. Extra Triplets. As the last example, let us consider a model in which a Higgs doublet
is accompanied by a triplet:

φ(T = 1/2) =
(

φ+

φ0

)
, ξ(T = 1) =

⎛
⎝ ξ++

ξ+

ξ0

⎞
⎠ (34)



22 Ivanov I. P.

with the following interaction potential:

V = −m2(φ†φ) − M2(ξ†ξ) + λ1(φ†φ)2 + λ2(ξ†ξ)2 + λ3(φ†φ)(ξ†ξ)+

+ μ
[
ξ0φ0φ0 +

√
2ξ−φ+φ0 + ξ−−φ+φ+

]
. (35)

If we assume that parameter M2 is very large, then both 〈φ0〉 = v and 〈ξ0〉 = u are non-zero,
but u ≈ μv2/M2 is naturally small. This small vacuum expectation value can be used to
generate neutrino masses without right-handed neutrinos (neutrino masses at the eV scale
require M ∼ 1013 GeV). Simultaneously, the same model can also lead to the weak lepton
number violation, which is a prerequisitive for the leptogenesis. An interaction term that
performs this task is

fij

[
ξ0νiνj + ξ+(νilj + liνj)/

√
2 + ξ++lilj

]
+ h.c. (36)

The violation of the lepton number can be traced from the fact that heavy triplet ξ++ can
decay both into φ+φ+ with L = 0 and into l+i l+j with L = −2. (By the way, decay of a
boson into two fermions instead of a fermionÄantifermion pair is nothing strange. To give
a simple example in hadronic physics, one can excite a deuteron so that it will break into
a proton and a neutron, both of which are fermions.) A realistic version of this model was
studied in [15] and it was shown that two such triplets plus a CP -violation naturally lead to
leptogenesis required to explain the matterÄantimatter asymmetry.

3. SUMMARY

Physics of the Higgs boson(s) within the Standard Model and, especially, beyond SM is a
very hot topic in high-energy physics. It will become even hotter if the LHC ˇnds (hopefully,
soon) any hint of the non-SM electroweak symmetry breaking mechanism. Many variants of
the electroweak symmetry breaking scenarios have been introduced and developed, and we
covered only a very small number of them. Many other exciting models can be found in the
reference list.
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