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TOPOLOGICAL SOLITONS.
KINKS IN MODELS φ4 AND φ6

Ya. M. Shnir 1

State University of Belarus, Minsk

These are notes of the ˇrst part of the lectures on topological solitons, presented at Baikal Summer
School on Physics of Elementary Particles and Astrophysics (July 2011). Some of the basic properties of
topological solitons are reviewed on a simple model example of simple one-dimensional kink solution of
the nonintegrable scalar φ4 model. Both perturbative and nonperturbative sectors of the model, oscillon
solution and resonance structures in the soliton collision are discussed.
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INTRODUCTION

Soliton solutions in the nonlinear ˇeld theories have been studied along several decades,
it is evident that these spatially localized nonperturbative conˇgurations, such as kink [1],
vortex [2] and monopole [3, 4] play an important role in a wide variety of physical systems.
The study of the interaction between the solitons and their dynamical properties has attracted
a lot of attention in many different contexts.

Simplest example of the topological solitons in one dimension is the class of the kink
(K) solutions [1] which appear in the model with a potential with two or more degenerated
minima. Double-well potential corresponds to the nonintegrable φ4 model. This model has a
number of applications in condensed matter physics [5], ˇeld theory [6,7] and cosmology [8].

Dynamical properties of kinks, the processes of their scattering, radiation and annihilation
have already been discussed in a number of papers, see, e.g., [10Ä17]. In integrable theories,
like the sine-Gordon model, there is no energy loss to radiation and kinks do not annihilate
antikinks. However, in the nonintegrable φ4 model, the radiation effects in the process of
kinkÄantikink (KK̃) collision become very important and depending on the impact velocity,
the collision may produce various results, e.g., an oscillating bound state can be formed, also
the soliton and antisoliton may bounce and re
ect from each other.
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In the ˇrst part of the present review we discuss the model and describe the spectrum
of perturbative 
uctuation on the background of the kink. Then, we discuss the process of
production of kinkÄantikink pairs in the collision of particle-like states related to resonance
excitation of the oscillon conˇguration. Finally, in the third part we revisit the mechanism
of the KK̄ resonant bouncing scattering related to the energy exchange between the kink
internal mode and its translational mode.

1. KINKS AND PERTURBATIVE EXCITATIONS

We start from the Lagrangian of the well-known (1 + 1)-dimensional φ4 model

L =
1
2
φ̇2 − 1

2
φ′2 − λ

4

(
φ2 − m2

λ

)2

− ε
m3

√
λ

φ, (1)

where the dimensionless parameter ε � 1. The potential of the model

V [φ] =
λ

4

(
φ2 − m2

λ

)2

+ ε
m3

√
λ

φ (2)

has two nongenerated minima. Evidently, the Lagrangian (1) corresponds to the so-called thin-
wall approximation of the well-known problem of the spontaneous vacuum decay [18, 19].
Let us recall only that at ε = 0 the two vacua are degenerate and there is a topological
nontrivial kink solution φ0 that interpolates between these vacua (see, e.g., [20]).

Note, that in the classical case this system also has a very simple interpretation in the
solid-state physics: it is the continuum representation of the model of a structurally unstable
ion lattice, having a double-well local potential and nearest-neighbor coupling. The kink
conˇguration in this picture corresponds to the domain wall and the continuum modes are
just phonons.

Let us consider the evolution of the kink after the metastable vacuum decay. In order to
solve the ˇeld equation corresponding to the Lagrangian (1)

φ̈ − φ′′ − m2φ + λφ3 + ε
m3

√
λ

= 0, (3)

we can use an expansion in powers of ε: φ = φ0 + εφ1 + ε2φ2 + . . .
In general, for calculation of the corrections to the kink ˇeld in the nth order of ε we

have the equation (
d2

dt2
+ D2

)
φn + F (φn−1, . . . , φ0) = 0, (4)

where the operator D2 is

D2 = − d2

dx2
− m2 + 3m2 tanh2 mx√

2
, (5)

and F (φn−1, . . . , φ0) is a function of all low-order corrections φk , k < n. Note, that parity
of F (φn−1, . . . , φ0), as well as φn, are interchanging from one order of ε to another. Thus,
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one can pick out the asymptotic of the nth order correction by the deˇnition

φ2n−1(x) = B2n−1 + χ2n−1(x), φ2n(x) = B2n tanh
mx√

2
+ χ2n(x),

where Bk = const. The boundary condition is that the functions χk(x) tend to zero at x → ∞.
Thus, the zero-order approximation gives the classical equation

φ̈0 − φ0
′′ − m2φ0 + λφ3

0 = 0, (6)

with the above-mentioned kink solution [1,23]

φ0 =
m√
λ

tanh
mx√

2
. (7)

The ˇrst-order corrections to the solution (7) can be obtained from the next equation

d2

dt2
φ1 + D2φ1 +

m3

√
λ

= 0, (8)

where D2 is the operator (5).
In order to ˇnd the corrections to the kink solution, we can use the expansion of φ1

on the normalizable eigenfunctions ηn(x) of the operator D2 which describe the scalar ˇeld

uctuations on the kink background, i.e., one can write

φ1 =
∞∑

n=0

Cn(t) ηn(x), (9)

where the solutions of the eigenvalue problem D2ηn(x) = ω2
nηn(x) are (see, e.g., [20])

η0(z) =
1

cosh2 z
, η1(z) =

sinh z

cosh2 z
,

ηk(z) = eikz (3 tanh2 z − 3ik tanh z − 1 − k2)

(10)

and z = mx/
√

2. The corresponding eigenvalues are

ω2
0 = 0, ω2

1 =
3
2
m2, ω2

k = m2

(
2 +

k2

2

)
. (11)

So, there are a zero mode (η0), which corresponds to kink translation, a vibrational mode (η1),
connected with the time-dependent deformation of the kink proˇle, and continuum modes (ηk),
which in quantum theory correspond to scalar particle excitations on the kink background.
These functions form a complete set which spans the space of any function of x. The
corresponding orthogonality relations are

∞∫
−∞

η2
0 dx =

4
√

2
3m

,

∞∫
−∞

η2
1 dx =

2
√

2
3m

,

∞∫
−∞

η∗
kηk′ dx =

2
√

2π

m
(1 + k2)(4 + k2)δ(k − k′).

(12)
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If we substitute the expansion (9) into Eq. (8), we obtain

∞∑
n=0

(
C̈n(t) + ω2

n Cn(t)
)

ηn(x) +
m3

√
λ

= 0. (13)

Using the orthogonality relations (12) one can make a projection of Eq. (13) onto the
modes ηn(z). The projection onto the zero modes gives the equation (here we take into

account that
∞∫

−∞
η0 dx = 2

√
2/m)

4
√

2
3m

C̈0 +
2
√

2m2

√
λ

= 0, (14)

with the solution

C0 = − 3m3

4
√

λ
t2 + V0t + x0.

It means that the correction to the kink solution due to zero-mode excitation is (here we
suppose that V0 = x0 = 0)

φ = φ0(x) + εC0(t)η0(x) =
m√
λ

tanh
mx√

2
− ε

3m3

4
√

λ

t2

cosh2 z
= φ0(x + δx(1)), (15)

where the shift of the kink to the ˇrst order is given by

δx(1) = −ε
3m

2
√

2
t2.

The meaning of this correction is quite obvious: because the external force F we introduced
in (1) in the ˇrst order is (here E is the energy density)

F = −
∞∫

−∞

dx
dE

dx
= −

∞∫
−∞

dx
d

dx

[
1
2
φ̇2 +

1
2
φ′2 +

λ

4

(
φ2 − m2

λ

)2

− ε
m3

√
λ

φ0

]
=

= −dM

dx
− ε

∞∫
−∞

dx
d

dx

m3

√
λ

φ0 = −2ε
m4

λ
,

where the kink energy E or its classical mass M is

E ≡ M =

∞∫
−∞

dx

[
1
2
φ̇2 +

1
2
φ′2 +

λ

4

(
φ2 − m2

λ

)2

+ ε
m3

√
λ

φ

]
=

2
√

2m3

3λ
, (16)

we see that really the acceleration of the kink is given by the relation

a = −ε
3m√

2
=

F

M
,

that is exactly the Newton formula.
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The meaning of other corrections can be found in the same way. After the projection of
Eq. (13) onto the vibrational mode η1(z) we have

C̈1 + ω2
1C1 = 0, i.e., C1 = const eiω1t, (17)

i.e., there is no interaction between this mode and the external force.
As for the kth mode belonging to the continuum, one obtains

C̈k + ω2
kCk +

m3
∫

ηk(z) dz

2
√

λπ(1 + k2)(4 + k2)
= 0. (18)

Calculation of the integral here gives

∞∫
−∞

dz ηk(z) = 2π(2 − k2) δ(k), (19)

and we have

C̈k + ω2
kCk +

m3(2 − k2)δ(k)√
λ(1 + k2)(4 + k2)

= 0. (20)

In case of the lowest mode of the continuum (k0 = 0) it is just the equation for an oscillator
in external ˇeld with the solution

Ck0 = eiωk0 t − m

4
√

λ
≡ C̃0 −

m

4
√

λ
. (21)

For all other continuum modes with k �= 0 we have the trivial oscillator equation

C̈k + ω2
k Ck = 0, i.e., Ck = const eiωkt. (22)

Using the above-mentioned arguments one can write the arbitrary constants as (m/
√

λ)ak,
where the parameters ak are ˇxed by the initial conditions.

Thus, collecting the contributions from all modes of excitation (14), (17), (21), and (22),
we ˇnd the ˇrst-order correction to the kink conˇguration

φ1 =
m√
λ

{
−3

4
m2t2η0 −

1
4
ηk0 + a1 eiω1t sinh z

cosh2 z
+

∞∑
k=0

akC̃k(t) ηk(x)

}
, (23)

where C̃k(t) = eiωkt and ηk0 = 3 tanh2 z−1. The last two terms in this expression correspond
to the 
uctuation corrections to the kink solution and can be excluded if we take the initial
condition at t = 0 as a1 = 0, ak = 0 for all k.

The ˇrst term, connected with the zero-mode contribution, describes the motion of the
kink with a constant acceleration, as mentioned above. The meaning of the second term can
be clariˇed if one considers the corresponding correction in the asymptotic region (x → ±∞),
where we have (up to 
uctuation corrections)

φ(±∞) =
m√
λ

(
±1 − ε

2
+ O(ε2)

)
. (24)

Indeed, the potential (2) has the minima at φ = φ(±∞) given by Eq. (24). Thus, this term
corresponds to a shift of the vacuum value of the scalar ˇeld.
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Expression (23) allows one to calculate the ˇrst-order corrections to the kink energy E .
Substituting φ = φ0 + εφ1 into Eq. (16) we have, as one could expect,

E = M + ε2

∞∫
−∞

dx
1
2
φ̇1

2
+ O(λ) = M + ε2 3m5

λ
√

2
t2 + O(λ) = M +

MV 2

2
+ O(λ), (25)

where V = ε3mt/
√

2 = at is the kink velocity.
Note, that the changing of the kink kinetic energy is equal to the changing of the potential

energy of the ˇeld due to linear perturbation, because

ΔV = ε
m3

√
λ

∫
dx (φ0 + εφ1 + . . .) , (26)

and, in the same second order, for the large mt � 1 we have

Δ(2)V = −ε2 3m4

4λ
m2t2

∫
dx

cosh2 z
= −ε2 3m5

λ
√

2
t2 ≡ MV 2

2
. (27)

In the same way, one can evaluate the second-order corrections to the kink solution [15].

2. PRODUCTION OF KINKS IN THE COLLISION OF PARTICLE-LIKE STATES

The most interesting aspects of the topological solitons are related to their dynamical
properties, the processes of their scattering, radiation and annihilation [11Ä14, 16, 17, 21, 22].
In integrable theories, like the sine-Gordon model, there is no energy loss to radiation and
kinks do not annihilate antikinks. However, in the nonintegrable φ4 model, the radiation
effects in the process of kinkÄantikink (KK̃) collision become very important and depending
on the impact velocity, the collision may produce various results, e.g., an oscillating bound
state can be formed, also the soliton and antisoliton may bounce and re
ect from each other.

It is known that the collision of a kink and an antikink is chaotic, i.e., for some values of
the impact velocity the solitons bounce back, while for some different impact velocity, smaller
or larger, they annihilate [12,17]. This behavior is related to a resonance effect between the
oscillations of the KK̃ pair and excitation of the discrete vibrational mode of the kink.

The opposite process of the production of KK̃ pairs in the collision of particles also
will have similar fractal character due to resonance effect between the oscillon created in the
particle collision and the oscillation of the correlated KK̃ pair [21].

Thereafter we consider the rescaled model (1) without perturbation, i.e., we set ε = 0 and
make use of the classical scale-invariance of the model to absorb the values of the vacuum
expectation value and the scalar coupling into rescaled scalar ˇeld and spacial coordinate.
Hence, we consider the Lagrangian

L =
1
2
∂μφ∂μφ − 1

2
(
φ2 − 1

)2
. (28)

The perturbative sector of the model consists of small linear perturbations around one of the
vacua with the mass m = 2. The static kink solution for this model interpolates between the
vacua φ0 = −1 and φ0 = 1 as x increases from −∞ to ∞: φK(x, t) = tanhx.
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Note, that there is a lot of similarity between the nonintegrable model (34) and its
integrable sine-Gordon counterpart. However, the states of the perturbative sector are different
in these theories. Evidently, in both models there are zero translational modes in the spectrum
of the linear perturbation about the kinks, but a single φ4 kink has in addition a normalizable
discrete vibrational mode which oscillates harmonically with frequency ω1 =

√
3. The

continuum modes on the kink background have higher frequencies ω > 2. This is the feature
which makes the φ4 model be nonintegrable.

Evidently, if the amplitude of the oscillation is large enough, such a periodically expanding
and contracting kink can be treated as kinkÄantikinkÄkink bound state and this excitation can
be considered as an intermediate step in the process of creation of the KK̃ pair on the kink
background [13,16].

Another situation is related to the possibility of production of KK̃ pairs on the trivial
background. Indeed, the linear excitation spectrum around the trivial vacuum contains the
radiation modes and within the φ4 model the collision of these particle-like states may produce
KK̃ pairs. Evidently, the KK̃ production may proceed even in the case when there are no
kink-like states in the initial state at all [21,31].

Note, that nonlinear ˇeld theories usually contain several types of topological and non-
topological excitations. Indeed, besides the solitonic conˇgurations there is another spa-
tially localized nonperturbative oscillon solution which, although unstable, is extremely long-
lived [24Ä26]. The oscillon states naturally appear in various models [27Ä29].

In the φ4 model the oscillon solutions are almost periodic. One can ˇnd the oscillon
numerically by solving the ˇeld equation in the Fourier series in time:

φ = 1 + η0(x) + η1(x) cos (Ωt) + η2(x) cos (2Ωt) + . . . (29)

If Ω < m = 2, the oscillations are below the threshold and cannot propagate as modes of the
continuum, so the oscillon remains relatively stable and the η1 term dominates.

It was pointed out recently that an oscillation mode of the φ4 model may decay into a KK̃
pair [21,30].

To investigate the process of production of the kinks, we consider two widely sepa-
rated identical wave trains propagating from both sides on the trivial background towards a
collision point:

φ(x, t) = 1 + C[F (x + vt) sin (ωt + kx) + F (x − vt) sin (ωt − kx)], (30)

where k is the wavenumber of the incoming wave; ω =
√

k2 + 4 is the frequency and
v = k/ω is the velocity of propagation of the wave train. We consider the envelope of the

train F (x) = [tanh (x − a1) − tanh (x − a2)], also the Gaussian envelope F (x) = e−(x−a3)
2

was used to prove that our results are independent of the particular choice of the initial
state. The parameters a1, a2, and a3 deˇne the length of the train and the initial separation
between the trains. Typically, in our numerical simulations we used the values a1 = 10,
a2 = 30, a3 = 20. The amplitude C and the wavenumber k are the impact parameters, which
can be changed freely. To ˇnd a numerical solution of the PDE describing the evolution
of the system, we used the pseudospectral method. For the time-stepping function we used
symplectic (or geometric) integrator of the 4th order to ensure that the energy is conserved.

In our numerical analysis we found that after small-amplitude collisions, the two wave
trains separate and move in opposite directions and the radiation is created due to the in-
teraction between these trains. In the center of collision an oscillating lump remains. For



Topological Solitons. Kinks in Models φ4 and φ6 155

small amplitudes, the frequency of the oscillation is just a bit above the mass threshold. This
indicates that the lump could be identiˇed with low wavenumber linear excitation of the trivial
vacuum. For large-amplitude collisions, the remaining lump oscillates with frequency within
the mass gap, so such a state can be identiˇed as an oscillon.

Furthermore, for a certain range of values of the impact parameters, C and k, we observed
the creation of KK̃ pairs. During this process also an oscillon is created in the collision
center (Fig. 1).

Fig. 1. Production of the kinks in the collision of two identical wave trains. The initial and ˇnal ˇeld
conˇgurations are plotted at t = 0, t = 45, and t = 100, respectively

The most important feature of this process is that in the space of parameters, the regions
of creation of the solitons and the regions where this process is not taking place, are separated
by a fractal-like boundary (Fig. 2).

Fig. 2 (color online). Fractal structure in the C, k plane. Shading (or color) represents the measured

minimum of average of the ˇeld 〈A〉 = 1/20
10∫

−10

dxφ(x, t). The dark regions (blue in color), where

〈A〉 < −1, indicate the creation of KK̃ pairs
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Indeed, this diagram is made of elementary plaquettes (boxes). The total number of these
boxes corresponds to spatial resolution of the diagram, in our calculations we typically used
the pixel resolution 640 × 480. If N is the number of boxes covering the boundary between
the regions of creation and the trivial sector and l is the side-length of the boxes, the box-
counting (fractal) dimension is deˇned as ratio d = lim

l→0
log N/ log l. For ˇnite wave trains

we do not expect that this boundary would be a real fractal but some properties of scaling
are observed. We have measured the fractal dimension to be d = 1.770 ± 0.011, which
is much more than 1. In the case of the Gaussian envelope we found d = 1.865 ± 0.007.
The interesting peculiarity of the latter case is that the KK̃ pairs can be created even if k = 0
(standing wave perturbation).

For certain values of impact parameters, an oscillon remaining in the collision center
decays into the second KK̃ pair. Sometimes the second pair moves even faster than the ˇrst
pair, and it may annihilate with the ˇrst one creating two moving oscillons. We know that
the process of collision KK̃ pair also leads to fractal structure in the velocity space [12,17].
In our process, instead of creation on KK̃ pair, two oscillons could also be ejected from the
collision center and after a while they could decay into two pairs of KK̃. We observed some
evidences that these processes also yield the fractal dependency of impact parameters.

In order to capture the most important steps in the process of the creation of KK̃ pair,
in the collision of two identical bunches of particles, we use the collective coordinate method
which allows us to identify the physical degrees of freedom of the system under consideration.
This approach has been applied to describe the dynamics of the kinkÄantikink system [32].

First, we describe the process of creation of the oscillon in the collision of the incoming
wave trains. We assume an initial ˇeld conˇguration on the trivial background

φ(x, t) = 1 +
A(t)

cosh (x/x0)
+ ξ(x, t), (31)

which corresponds to the proˇle of the oscillon solution [25] with some additional perturbation
ξ(x, t). The Gaussian approximation to the oscillon conˇguration [26] was also used to check
the results. Here, the variable A(t) is introduced as the collective coordinate of the oscillon
and the parameter x0 represents the oscillon width. From the expansion (29) we know that
when ξ = 0 the oscillon should, in the ˇrst approximation, oscillate as A(t) = A0 cos (Ωt),
where A0 is the amplitude of the oscillations, Ω < 2 and the value of the parameter x0

depends on the amplitude A0. In the presence of the external ˇeld ξ, the amplitude of the
oscillon changes. However, for the sake of simplicity, we set x0 = 1.5 as it is the width of the
oscillon oscillating with amplitude A0 = 0.4. Substituting (31) into (34) and after integration
over all space x gives the effective Lagrangian which can be split into three parts: Lagrangian
of the free oscillon, Lagrangian of the perturbation ξ, and Lagrangian of interaction between
the oscillon and the perturbation,

L(A, Ȧ) = LA + Lξ + Lint. (32)

The Lagrangian of the free oscillon has the form

LA

x0
= (Ȧ)2 − 2

3
A4 − πA3 −

(
4 +

1
3x2

0

)
A2. (33)
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This is the Lagrangian of an anharmonic oscillator with frequency Ω0 =
√

4 +
1

3x2
0

> 2.

Since the frequency of the oscillon must be smaller than m = 2, the amplitude of the
oscillations must be large enough to decrease the oscillation frequency below the mass thresh-
old [21,26], so the nonlinearities are crucial for the existence of the oscillon. We assume that
the ˇeld ξ is a solution to the equation of motion of the Lagrangian Lξ. The perturbation ξ
should represent two wave trains coming from ±∞. For the sake of simplicity, we take the
perturbation of the form (30).

The initial condition is that A(0) = 0. As the wave train approaches the point of
the collision, the oscillon mode is excited. If the amplitude of the perturbation is rela-
tively small, then the oscillon, created in the collision, oscillates with a constant amplitude
around A = 0. However, if the amplitude is large enough, or the incoming perturbations
are close to one of the (Mathieu) resonances, the amplitude of the oscillon rapidly increases
and it starts to oscillate around A = −1 (or, in other words, around φ = 0) with amplitude
of order 1. This clearly breaks our effective approach, but it also means that the system
has changed the ground state. Such a resonant oscillation with a large amplitude, on the
other hand, shifts the center of the oscillation. This transition can be related to the creation
of KK̃ pairs although the corresponding collective coordinates are not presented in our simp-
liˇed model.

Again, when we examined this effective model, we found a fractal structure in the
plane A, k. This fractal structure was less complicated and more localized than in the
case of full PDE. That means that although our effective model works and captures qual-
itatively the most important features of the full system it also fails to reproduce some
of the details, which is not a surprise for such a complicated dynamical process. We
have also introduced an approximation for α(t), β(t), and γ(t), and again, we could
reproduce both the resonance excitation of the oscillon and the generation of fractal
structure.

This result shows, that even after performing so many simpliˇcations we could reproduce
(at least qualitatively) the most important features of the evolution of the system. This result
conˇrms our conjecture about the mechanism of the creation of the KK̃ pair in a three-stage
process (i.e., excitation of the oscillon, resonance and oscillon decay into the KK̃ pair). Sec-
ondly, we conclude that the interaction between the incoming wave trains and the oscillon is
the underlying reason for the generation of the fractal structure. Thirdly, given the generality
of our approach, we expect that the effective nonlinear interactions of the same type can be
found in many different models, so the fractal structure should not be limited only to the case
of the φ4 model.

3. RESONANCE STRUCTURE
IN THE KINKÄANTIKINK COLLISIONS IN THE φ6 MODEL

Let us consider now a bit different model, the (1 + 1)-dimensional φ6 theory, deˇned by
the rescaled Lagrangian density [33]

L =
1
2
∂μφ∂μφ − 1

2
φ2

(
φ2 − 1

)2
. (34)



158 Shnir Ya.M.

The model has three vacua φv ∈ −1, 0, 1. The static kink solution φK interpolates between
the vacua, e.g., φv = 0 and φv = 1 as x increases from −∞ to ∞: φK(x) = φ(0,1)(x) =√

1 + tanhx

2
. Other static (anti)kinks can be obtained from this solution by using the

discrete symmetries of the model φ → −φ, x → −x, so φK̄(x) = φ(1,0)(x) = φ(0,1)(−x),
φ(0,−1)(x) = −φ(0,1)(x) and φ(−1,0)(x) = −φ(0,1)(−x). The mass of the kinks is M = 1/4.

The perturbative sector of the model consists of small linear perturbations (®mesons¯)
around one of the kink solutions φ(x, t) = φK(x) + η(x) eiωt. Linearized ˇeld equations are
−ηxx + U(x)η = ω2η, where [33]

U(x) = 15φ4 − 12φ2 + 1. (35)

Considering an isolated kink φ(x) = φK one can see that there are no bound states but the
usual translational zero mode. The states of the continuum spectrum can be written in terms
of the hypergeometric functions [33].

Since the model (34) contains two different classes of the kink solutions, we have to
analyze KK̄ collisions in the sector with vacuum state φv = 0 and in the sector with vacuum
state φv = 1 separately (note mirror symmetry of the sectors φv = ±1f ). In the former
case the initial conˇguration of the colliding kinks, which we denote as (0, 1) + (1, 0),
can be taken as a superposition φ(x) = φK(x + a) + φK̄(x − a) − 1, where a is the
separation parameter; in the latter case the initial KK̄ conˇguration (1, 0) + (0, 1) is φ(x) =
φK(x−a)+φK̄(x+a). Note, that in both cases there is no internal vibrational mode bounded
to the kinks, so we could expect the KK̄ collision will be elastic and no resonant structure
will be observed.

However, our numerical results reveal completely different picture. Indeed, in the case
of the (0, 1) + (1, 0) KK̄ collisions we observe no resonance windows and the process
is regular as expected (Fig. 3, b). For v < vcr ≈ 0.289 the pair annihilates into the
vacuum φv = 0 with small amount of radiation emitted, while for v > vcr the col-
lision yields a mirror pair of solitons escaping to inˇnity with no bouncing: (0, 1) +
(1, 0) → (0,−1) + (−1, 0). By contrast, the collision of the (1, 0) + (0, 1) conˇgura-
tion reveals the fractal structure with a sequence of bouncing windows presented
in Fig. 3, a.

For velocities v > vcr = 0.0457 the kinks would always have enough energy to separate,
however, for smaller impact velocities we observe regular n-bounce windows. Evidently, this
pattern is very much similar to the well-known observations in the φ4 model although, as in
the case of the (0, 1) + (1, 0) KK̄ collisions, there is no internal mode into which the kinetic
energy can be transferred. Thus, we have to look for another mechanism which would explain
such a behavior.

A special feature of the spectrum of linear perturbation around the φ6 kink is that, un-
like the φ4 model, the potential U(x) is not symmetric with respect to re
ections x →
−x. Therefore, the mass of the meson states is different on the opposite sides of the
kink. This peculiarity means that there is a wide potential well in the system of well-
separated (1, 0) + (0, 1) KK̄ pair (Fig. 4) with two local minima associated with positions
of the solitons.

By contrast, in the case of (0, 1) + (1, 0) conˇguration these two minima are separated
by a barrier. If the velocity of the kinks is relatively small, the adiabatic approximation can
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Fig. 3. The KK̄ collision in the sectors (1, 0) + (0, 1) (a) and (0, 1) + (1, 0) (b), respectively. The

plots represent the ˇeld values measured at the collision center (up), position of the kink (middle) and

ˇtted velocity of the kink (bottom), respectively (1, 0) + (0, 1)
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Fig. 4. The potential U(x) of the linear perturbations on the background of the composed (0, 1) +

(1, 0) (a) and (1, 0) + (0, 1) (b) KK̄ conˇgurations

be used and then we can ˇnd a numerical solution of Eq. (35) for a conˇguration φ(x) =
φK(x − a) + φK̄(x + a) as a function of separation parameter a. Evidently, two lowest
states are the quasi-zero modes of the KK̄ pair which rapidly approach zero eigenvalue from
opposite sides as separation grows. The meson states, trapped by the potential well generated
by the KK̄ pair, then have separation-dependent energy.

So, the difference from the kink collision in the φ4 model is that although there is no
internal mode of the kinks, the collective meson states can be excited by slowly approaching
solitons absorbing the kinetic energy of the (0, 1) + (1, 0) KK̄ conˇguration and giving it
back in some sort of the resonance process. Note, that the critical velocity in this case is
much smaller than in the collision of the KK̄ pair in the φ4 model [12,17]. Since the mass
of the excitations around the vacua φv = 0 and φv = 1 is m0 = 1 and m1 = 2, respectively,
it is also much easier to excite the radiation modes in the collision of the (1, 0) + (0, 1) pair.
It implies that less energy will be lost to radiation than it happened in the case of the collision
of the (0, 1) + (1, 0) pair, so the critical velocity in the former case is lower.

Furthermore, a very precise scan of the narrow region of the velocities range just below
the critical velocity vcr, reveals the fractal structure of this process similar to the intricate
pattern of the KK̄ interaction in the φ4 model [17]. Thus, considering two-bounce windows,
we can label each window by an integer n denoting the number of oscillations between two
collisions. This number increases by one for the next consequent windows.

Note, that there is an important difference from the resonant structure observed in the
φ4 KK̄ collision [12, 17], where the ˇrst two-bounce window is associated with a single
oscillation of the internal mode. In our case, the separation between the kinks must be much
larger to create a trapping potential, so the ˇrst two-bounce window already has a large
number of oscillations.
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Our numerical results clearly suggest that these oscillations are associated with the lowest
collective mode. Indeed, for all two-bounce windows we observed, the kinks are sepa-
rated by 2a ≈ 12. Considering the dependence of the time T (v) between the collision
vs. number of oscillations in the two-bounce window n(v), we observe ˇtted linear func-
tion T = 2πnω + δ, where δ = 11.7779 and ω = 1.045, which is the same frequency of
the lowest collective mode as the value ˇtted from Fourier transform. Again, this closely
resembles similar relations in the φ4 model [12, 17] although the mechanism of the reso-
nant re
ection and the parameters ω, δ are different. Actually, the main difference is that
in the case of the (1, 0) + (0, 1) system the interaction between the kinks mediated by the
collective meson state is long-ranged and relatively weak, whereas the internal meson state
absorbing the energy of collision of the φ4 KK̄ collision, is exponentially localized and
the kinks after the ˇrst collision can move as free particle-like conˇgurations. In the φ6

model the KK̄ pair forms a potential well whose boundaries are interacting with the collec-
tive meson states exerting an extra pressure on the kinks. This could be observed as small
acceleration of the bouncing kinks between the ˇrst and the second collisions. Also the
energy of the collective meson states trapped by the adiabatically approaching φ6 kinks is not
constant.

Nevertheless, we can try to extend the similarity between these different models by
consideration of the asymptotic attractive force, which can be approximated by corresponding
Yukawa potentials as F (a) ∼ 2 e−a for the K̄K pair, and as F (a) ∼ 2 e−2a for the KK̄ pair.
This allows us to estimate the dependence T (v) under assumption that the energy of the
colliding kinks goes to the excitation of the collective meson state and then it returns back to
the kinetic energy of the kink after the second bounce.

A novel feature of resonant φ6 scattering is the ®missing¯ window at n = 13. For
resonant φ4 scattering, two-bounce windows are also missing, for n < 3, but once they set
in, they are found for all n, at least up to initial velocities very close to the critical escape
velocity. By contrast, in φ6 scattering we found the ˇrst two-bounce window at n = 12, then
a gap at n = 13, and then windows for all higher values of n that we examined. A similar
structure is reproduced when looking at the three-bounce windows next to a given two-bounce
window, and we suspect that the pattern will continue at all higher levels. It is possible that
an explanation for this behavior will be found in a careful treatment of the higher modes of
the bound-state spectrum.

Our investigation of φ6 kink collisions has shown that resonance phenomena have wider
relevance to kink scattering than it had previously been thought. In particular, similar behavior
should be seen in any model in which kinks interpolate between degenerate but nonequivalent
vacua. The new mechanism enabling resonances to occur is the formation of meson bound
states in the potential well created in the space between the constituents of a suitably ordered
kinkÄantikink pair, and does not require the existence of an internal mode localized on a
single kink. The resulting pattern of resonance windows is more complicated than that for φ4

scattering, with gaps appearing at all levels. It remains a major challenge, deserving further
study, to ˇnd a robust mechanism to explain these gaps theoretically.
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