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We study the transition form factors of pseudoscalar mesons by means of anomaly sum rule Å
an exact relation which is a consequence of dispersive representation of axial anomaly. This sum rule
(derived for the octet channel) combined with the quarkÄhadron duality allows us to relate the transition
form factors of η and η′ mesons. The notion of quarkÄhadron duality in connection with our approach
is discussed and comparison with recent experimental data is done.

ˆ§ÊÎ¥´Ò ¶¥·¥Ìμ¤´Ò¥ Ëμ·³Ë ±Éμ·Ò ¶¸¥¢¤μ¸± ²Ö·´ÒÌ ³¥§μ´μ¢ ¸ ¶μ³μÐÓÕ  ´μ³ ²Ó´μ£μ ¶· ¢¨² 
¸Ê³³ Å ÉμÎ´μ£μ ¸μμÉ´μÏ¥´¨Ö, ¸²¥¤ÊÕÐ¥£μ ¨§ ¤¨¸¶¥·¸¨μ´´μ£μ ¶·¥¤¸É ¢²¥´¨Ö  ±¸¨ ²Ó´μ°  ´μ³ -
²¨¨. �Éμ ¶· ¢¨²μ ¸Ê³³ (¶μ²ÊÎ¥´´μ¥ ¤²Ö μ±É¥É´μ£μ ± ´ ² ) ¢³¥¸É¥ ¸ £¨¶μÉ¥§μ° ±¢ ·±- ¤·μ´´μ°
¤Ê ²Ó´μ¸É¨ ¶μ§¢μ²¨²μ ¶μ²ÊÎ¨ÉÓ ¸¢Ö§Ó ³¥¦¤Ê ¶¥·¥Ìμ¤´Ò³¨ Ëμ·³Ë ±Éμ· ³¨ η- ¨ η′-³¥§μ´μ¢. �¡¸Ê¦-
¤ ¥É¸Ö ¶μ´ÖÉ¨¥ ±¢ ·±- ¤·μ´´μ° ¤Ê ²Ó´μ¸É¨ ¢ ¸¢Ö§¨ ¸ ¶·¥¤²μ¦¥´´Ò³ ¶μ¤Ìμ¤μ³,   É ±¦¥ ¶·μ¢μ¤¨É¸Ö
¸· ¢´¥´¨¥ ¸ ´μ¢Ò³¨ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨.
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INTRODUCTION

One of the ˇrst manifestations of axial anomaly [1] in particle physics was discovered in
two-photon decays of pseudoscalar mesons. The dispersive approach to axial anomaly [2]
extended the applicability of axial anomaly to the case of virtual photons and allowed one
to derive the so-called anomaly sum rule (ASR) [3, 4]. This exact sum rule proved to be a
useful tool for studying the processes of photonÄmeson transitions, e.g., γγ∗ → π0(η, η′) [5],
which attracted a lot of interest [6] due to recent experimental data on η, η′ transition form
factors [7].

In this paper, we study the ASR in the octet channel, where the η and η′ mesons make
the main contributions and the mixing of them is signiˇcant.

1. ANOMALY SUM RULE AND QUARKÄHADRON DUALITY

Let us brie	y remind what is the anomaly sum rule derived for the octet channel of axial
current (for details, see [4, 5]). The VVA triangle graph correlator

Tαμν(k, q) =
∫

d4xd4y e(ikx+iqy)〈0|T {Jα5(0)Jμ(x)Jν(y)}|0〉 (1)
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contains axial current J
(8)
α5 = 1/

√
6(ūγαγ5u + d̄γαγ5d − 2s̄γαγ5s) and two vector currents

Jμ = (euūγμu+edd̄γμd+ess̄γμs); k, q are momenta of photons. This correlator can be written
as a tensor decomposition with the Lorentz invariant coefˇcients Fj = Fj(k2, q2, p2; m2),
p ≡ k + q, j = 1, . . . , 6.

We are interested in the case of one real and one virtual photon (Q2 = −q2 > 0). Then,
for the invariant amplitude F3 − F6 the ASR can be obtained [4]:

∞∫

4m2

A3a(t; q2, m2) dt =
1

2π
√

6
, (2)

where A3a = (1/2) Im (F3 − F6).
The ASR (2) is an exact relation, i.e., the integral has neither perturbative [8] nor nonper-

turbative (as it is expected from 't Hooft's principle) corrections. Another important property
of this relation is that it holds for an arbitrary quark mass m and for any q2.

Saturating the l.h.s. of the three-point correlation function (1) with the resonances and
singling out their contributions to ASR (2), we get the sum of resonances with appropriate
quantum numbers:

f8
ηFη + f8

η′γFη′γ + (®other resonances¯) =

∞∫

4m2

A3a(t; q2, m2) dt =
1

2π
√

6
. (3)

Here the form factors FMγ of transitions γγ∗ → M (M = η, η′) and the coupling (decay)
constants fa

M are deˇned by the matrix elements:
∫

d4x eikx〈M(p)|T {Jμ(x)Jν(0)}|0〉 = εμνρσkρqσFMγ , 〈0|J (a)
α5 (0)|M(p)〉 = ipαfa

M . (4)

The terms denoted as ®other resonances¯ can be replaced by the integral

∞∫

s0

A3a(t; q2, m2) dt

(continuum contribution), where s0 is the continuum threshold in the local quarkÄhadron du-
ality approach. Usually s0 can be determined from the two-point QCD sum rules analysis,
but, in the case of the octet channel the value of s0 is not well calculated. However, in our
approach s0 can be treated as a free parameter and determined from the ASR itself in the
large Q2 limit.

Using the one-loop expression for continuum part of spectral function A3a =
1

2π
√

6
×

× Q2

(s + Q2)2
from ASR (2) we ˇnally come to

πf8
η Fηγ(Q2) + πf8

η′Fη′γ(Q2) =
1

2π
√

6
s0

Q2 + s0
. (5)

Let us note, that in (3) we single out both η and η′ mesons, while the rest of contributions
are absorbed by the continuum. This is because the η′ meson decays into two photons (since
continuum contribution vanishes at Q2 = 0), while the higher contributions are suppressed due
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to conservation of the axial current in the chiral limit. Let us also stress that the relation (5)
is correct for all Q2 due to the absence of corrections to A3a [10] which allows one to utilize
the above expression for different Q2.

Relying on the prediction of QCD factorization [9] for the transition form factors at
large Q2,

Q2F as
Mγ =

2√
6
(f8

M + 2
√

2f0
M ), (6)

we can express s0 in terms of decay constants fa
M :

s0 = 4π2((f8
η )2 + (f8

η′)2 + 2
√

2[f8
η f0

η + f8
η′f0

η′ ]). (7)

Equation (5) with substituted s0 from (7) relates the transition form factors FMγ and decay
constants fa

M for arbitrary Q2. The decay constants can be related basing on particular
mixing scheme. Here, we restrict ourselves to the simplest one with one mixing angle θ:
f8

η = f8 cos θ, f8
η′ = f8 sin θ, f0

η = −f0 sin θ, f0
η′ = f0 cos θ. For this scheme s0 = 4π2f2

8

does not depend on f0, while f8 can be calculated from (5) in the limit Q2 = 0 (η, η′ decay
widths are used in this case). θ = −16◦. The plot of the octet combination of the transition
form factors (l.h.s. of Eq. (5) multiplied by Q2) compared with the experimental data [7] is
shown in the Figure.

The ASR (5) for one-angle mixing scheme, θ = −16◦. Filled stripe denotes the uncertainties originated

from the experimental errors of meson decay widths and thus determination of f8. Inclined line
represents ASR at Q2 = 0

We see, that the available data are described well, though they manifest a slight tendency to
grow, resembling the isovector (π0) channel, but at larger Q2. This is a result of mixing in the
octet channel Å the form factors themselves Q2FMγ do not show such a kind of behaviour.
Theoretically, this growth corresponds to a possible correction to continuum contribution [5].
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