
�¨¸Ó³  ¢ �—�Ÿ. 2013. ’. 10, º 2(179). ‘. 149Ä156

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

GRAND UNIFICATION IN THE MINIMAL LEFTÄRIGHT
SYMMETRIC EXTENSION OF THE STANDARD MODEL

F. Siringo
Dipartimento di Fisica e Astronomia, Universit	a di Catania, Catania, Italy

INFN Sezione di Catania and CNISM Sezione di Catania, Catania, Italy

The simplest minimal leftÄright symmetric extension of the Standard Model is studied in the high
energy limit. Some consequences of the Grand Uniˇcation hypothesis are explored assuming that the
parity-breaking scale is the only relevant energy between the electroweak scale and the uniˇcation point.
While the model is shown to be compatible with the observed neutrino phenomenology, the parity-
breaking scale and the heavy boson masses are predicted to be above 107 TeV, which is beyond the
reach of present-day experiments. Below that scale, only an almost sterile right-handed neutrino with a
mass M(νR) of ≈ 100 TeV is allowed.
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¤μ¶Ê¸É¨³μ ¸ÊÐ¥¸É¢μ¢ ´¨¥ Éμ²Ó±μ Î¨¸Éμ ¶· ¢μ¢¨´Éμ¢μ£μ ´¥°É·¨´μ ¸ ³ ¸¸μ° M(νR) ≈ 100 ’Ô‚.
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An interesting aspect in the phenomenology of neutrinos is the emergence of important
elements of new physics beyond the Standard Model (SM) since there is no doubt that the
experimental results can only be understood if the neutrinos are assumed to have nonvanishing
masses and mixings. Massive neutrinos require the existence of a right-handed neutrino, which
makes the BÄL generator free of any triangle anomaly, and the related symmetry gaugeable.
Thus, the most natural extension of the SM gauge group is the leftÄright (LR) symmetric
group SU(2)L⊗SU(2)R⊗U(1)B−L, which breaks to the SM group at some high scale [1Ä4].
The LR models have been discussed as embedded in larger Grand Uniˇcation (GU) models,
like SO(10), and their symmetry-breaking path has been discussed by several authors [5Ä8].
There has recently [8Ä11] been a renewed interest in the minimal LR symmetric extension
of the SM [12, 13], a model with two scalar doublets and no bidoublets, which predicts the
low-energy phenomenology of the SM at a very modest cost in terms of new particles that
are required to be detected at very high energy.

Despite its simple particle content, the minimal model retains most of the interesting
properties of the more complex LR models; BÄL is a gauge symmetry with a triangle-
anomaly-free generator; parity is spontaneously broken; massive neutrinos can be accomodated
by seesaw mechanisms; right-handed neutrinos could in part account for the dark matter.
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Even if the minimal LR model without bidoublets fails to predict a stable broken-symmetry
vacuum [14] at tree-level, a consistent path for symmetry breaking has been predicted by the
inclusion of higher order corrections that become relevant in the HiggsÄTop sector [15]. Other
paths towards symmetry breaking have been recently discussed [9,11], and the minimal model
seems to be a ˇrst viable step towards new physics beyond the SM.

However, while some results have been obtained on the ®standard¯ LR model [16Ä19],
the more recent minimal LR model has not been sufˇciently studied. Like other non-
supersymmetric (non-SUSY) models, there is evidence that an intermediate high scale is
required prior to uniˇcation [20]. Thus, it would be interesting to investigate the issue of
high-energy uniˇcation in the framework of the minimal LR model.

In this paper, we present a detailed quantitative analysis of the most simple symmetry-
breaking path for the minimal LR model up to uniˇcation in order to pinpoint its predictions
for the breaking scales and neutrino masses. While a similar analysis has been presented for
the more complex SUSY LR models [21, 22], we notice that within the framework of the
detailed quantitative analysis the behaviour of gauge couplings depends on a detailed particle
content of the model. It is interesting to study the same problem in a truly minimal LR model
with a minimum particle content.

We show that the simple hypothesis that a single intermediate scale exists between GU and
the weak scale is enough for predicting this intermediate scale and the masses of the heavy
gauge bosons Z ′ and WR. The prediction of a breaking scale of order 1010 GeV Å halfway
between the electroweak scale and the GU scale Å is encouraging even if that scale seems
to be too large to be detected by present-day experiments. The results are compatible with a
micro-milli-eV mass scenario for neutrinos and show that the non-SUSY minimal LR model
is a valid and natural option as a ˇrst step toward understanding new physics beyond the SM.

An interesting point is that the present analysis does not make any use of the details of the
model above GU. It requires neither full knowledge of the symmetry-breaking mechanism nor
the detailed descriptions of the minimal set of Higgs representations; the beta functions depend
only on the actual particle content of the model below uniˇcation. This generality makes the
analysis valid for quite a wide range of mechanisms and different unifying groups. On the
other hand, this choice of generality can be regarded as a shortcoming of the present study
merely because no signiˇcant details can be provided on the emergence of the low-energy
Lagrangian, the 
ow of the merged couplings above GU, the proton lifetime prediction, and
the unifying group. Nevertheless, the analysis is very simple, and its generality makes it
worth to be discussed together with its possible effects on the physics of neutrinos.

The minimal LR symmetric model has been described in several papers [12Ä15]. The LR
symmetric Lagrangian is a sum of a fermionic term Lf , a standard YangÄMills term LYM for
the gauge bosons, a Higgs term LH , and eventually the HiggsÄfermion interaction term Lint.
A special feature of the minimal model is its limited particle content. The Higgs sector
contains two scalar doublets but no bidoublets, and is described by the simple Lagrangian

LH = −1
2
|Dμ

LχL|2 −
1
2
|Dμ

RχR|2 + V (χL, χR), (1)

where the covariant derivative Dμ
a is deˇned according to

Dμ
a =

(
∂μ − igaAμ

aTa + ig̃Bμ Y

2

)
, a = L, R. (2)
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TL,TR and Y are the generators of SU(2)L, SU(2)R and U(1)B−L, respectively, with
couplings gL = gR = g and g̃. The electric charge is given by Q = TL3 + TR3 + Y/2. The
Higgs ˇelds χa are the scalar doublets

χL =
(

χ+
L

χ0
L

)
, χR =

(
χ+

R

χ0
R

)
(3)

with the trasformation properties

χL ≡ (2, 1, 1), χR ≡ (1, 2, 1). (4)

A standard LYM is considered for the seven gauge ˇelds Aμ
L,Aμ

R, and Bμ.
Fermions are described by doublets of spinors ψL and ψR with the transformation pro-

perties
ψL ≡ (2, 1, B − L), ψR ≡ (1, 2, B − L). (5)

Their Lagrangian term Lf is

Lf = −ψ̄LγμDμ
LψL − ψ̄RγμDμ

RψR. (6)

The Lagrangian L = Lf + LYM + LH is fully symmetric for the LR exchange, if the
Higgs potential V (χL, χR) is assumed to be symmetric for the exchange of χL and χR.

The simplest path for symmetry breaking requires two energy scales [15]; parity is assumed
to be broken at a large energy scale μ = ΛR, where the scalar R-doublet χR takes a broken-
symmetry vacuum expectation value (VEV), 〈χR〉 = w, while the L-doublet χL still retains
a vanishing VEV. Below this energy scale, the gauge group is broken down to the SM
gauge group SU(2)L ⊗ U(1). At the electroweak scale, the L-doublet χL takes a broken-
symmetry VEV 〈χL〉 = v, breaking the SM gauge group into a simple U(1)em group
of electromagnetism. Provided that w � v = 246 GeV, the model predicts the same
phenomenology as of the SM. In unitarity gauge, we set χ+

a = 0 and take χ0
a real with a ˇnite

VEV 〈χ0
L〉 = v, 〈χ0

R〉 = w. Assuming that v � w, the mass matrix for the gauge bosons has
two charged eigenvectors [12], W±

L and W±
R , which are decoupled with the masses

MW (L) =
gv

2
, MW (R) =

gw

2
, (7)

a vanishing eigenvalue for the electromagnetic unbroken U(1)em eigenvector, and two massive
neutral eigenvectors with a small mass

M2
Z =

g2v2(g2 + 2g̃2)
4(g2 + g̃2)

+ O
(

v2

w2

)
(8)

for the ®light¯ Z boson and a large mass

M2
Z′ = (M2

W (L) + M2
W (R))

(
1 +

g̃2

g2

)
− M2

Z (9)

for the ®heavy¯ boson Z ′. All the effects of the heavy Z ′ and W±
R are certainly suppressed

at low energy [12].
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In an intermediate energy range, above the electroweak scale up to the parity-breaking
scale ΛR, the minimal LR model becomes identical to the SM with a SU(2)L gauge cou-
pling g2 = g and a U(1) coupling g1, which according to Eq. (8), must satisfy the matching
condition

1
g2
1

=
1
g̃2

+
1
g2
2

(10)

at the scale μ = ΛR in order to recover the known SM result 2M2
Z/v2 = g2

2 + g2
1 .

The GU hypothesis of a single uniˇed gauge symmetry describing all forces and matter at
very short distances is very attractive. According to it, the couplings are expected to merge at a
very high energy scale μ = ΛGUT. However, as in other non-SUSY models, an intermediate
high scale is required prior to uniˇcation [20]. In this paper, we explore the simplest
hypothesis that the intermediate scale is the parity-breaking scale μ = ΛR, and that above that
scale the gauge couplings of the full gauge group SU(3) ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

run up to the uniˇcation scale μ = ΛGUT, where they merge. We show that this simple
hypothesis is sufˇcient for determining the scales ΛR and ΛGUT by simply using the known
beta functions of the model.

We prefer to use simple one-loop beta functions that are decoupled and allow for a
thorough analytical discussion of the problem. Two-loop beta functions are known for the
Standard Model [23] and would be required for a thorough quantitative discussion, but their
use would not change the qualitative result in any way.

At one-loop, the gauge couplings satisfy the renormalization group (RG) equation

μ
dgi

dμ
= βi(gi) = −bi

g3
i

16π2
, (11)

where the coefˇcient bi is known to be [24]

bi =
11
3

CA − 4
3
(2ngTF ) − 1

3
Tsns, (12)

ng is the number of fermion generations, and ns is the number of complex scalars.
For the gauge groups SU(2) and SU(3), the running of the couplings is not affected by

symmetry breaking at the scale μ = ΛR; the coefˇcients are b2 = 19/6 for SU(2) (CA = 2,
TF = 1/2, ng = 3, Ts = 1/2 and ns = 1) and b3 = 7 for SU(3) (CA = 3, TF = 1/2, ng = 3
and ns = 0). In fact, the trace of the square of a generator T for both groups reads

Tr (giT · giT ) = 4g2
i ngTF = 2g2

i ng. (13)

For the U(1)B−L gauge group, the running of the coupling depends on the particle content
that differs below and above the symmetry-breaking scale. For μ > ΛR, the LR symmetry is
unbroken, and for each generation there are six left-handed quarks with Y = 1/6, six right-
handed quarks with Y = 1/6, two left-handed leptons with Y = 1/2, and two right-handed
leptons with Y = 1/2. Thus,

Tr (g̃T · g̃T ) =
∑

fermions

(g̃2Y 2) =
4
3
g̃2ng, (14)

which is tantamount to setting TF = 1/3 in Eq. (12). Since there are two scalars, ns = 2, we
obtain the coefˇcient b̃ = −3 for the coupling g̃ of U(1)B−L. For μ < ΛR, the LR symmetry
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is broken, and the coupling g1 is determined by the beta function of the SM U(1) gauge
group; for each generation, there are six left-handed quarks with Y = 1/6, three right-handed
quarks with Y = 2/3, three right-handed quarks with Y = −1/3, two left-handed leptons
with Y = −1/2, and one right-handed lepton with Y = −1. Thus,

Tr (g1T · g1T ) =
∑

fermions

(g2
1Y

2) =
10
3

g2
1ng, (15)

which is tantamount to setting TF = 5/6 in Eq. (12). Since there is one scalar, ns = 1 (heavy
ˇelds are integrated out), we obtain the SM coefˇcient b1 = −41/6 for the coupling g1.

It is useful to rescale the couplings in order to make the equivalence of the trace
in Eqs. (13)Ä(15) explicit. Let us deˇne a new set of couplings:

α1 =
5
3

g2
1

4π
; α̃ =

2
3

g̃2

4π
, (16)

α2 =
g2
2

4π
; α3 =

g2
3

4π
. (17)

In fact, the GU hypothesis requires the trace in Eqs. (13) and (15) to be the same at the GU
scale μ = ΛGUT, where SU(3), SU(2)L, SU(2)R, and U(1)B−L are restored as subgroups
of the same larger group. In terms of the new set of rescaled couplings, the equivalence of
the trace is satisˇed whenever the couplings are equal, and the condition for GU is simply
stated as α̃ = α2 = α3.

The new set of couplings satisˇes the RG equation

μ
dαi

dμ
= βi(αi) = −2ci

α2
i

4π
, (18)

where c2 = b2, c3 = b3, c1 = 3b1/5, and c̃ = 3b̃/2.
Equation (18) can be easily integrated, yielding the linear equations

α−1
i (μ) = α−1

i (μ0) +
ci

2π
ln

(
μ

μ0

)
(19)

that are reported in the ˇgure. In this scenario, the scale ΛGUT is determined by the crossing
of α2 and α3. The inclusion of two-loop corrections would decrease the value of ln ΛGUT

by less than 3% [23] and would not affect the order of magnitude of ΛGUT. Two-loop
corrections are even smaller at the intermediate scale ΛR and are completely negligible at the
electroweak scale.

As discussed above, we assume that all the couplings cross at the scale μ = ΛGUT,
yielding α̃(ΛGUT) = α2(ΛGUT) = α3(ΛGUT). According to the RG Equation (19), we let
the coupling α̃ 
ow down the parity-breaking scale ΛR, where, according to the matching
condition in Eq. (10), it must satisfy the constraint

α1(ΛR) =
5α2(ΛR)α̃(ΛR)

2α2(ΛR) + 3α̃(ΛR)
, (20)
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Running of the inverse couplings α−1
1 , α−1

2 , and α−1
3 for the SM SU(3)⊗SU(2)L⊗U(1) gauge group,

below the parity-breaking scale (μ < ΛR, on the left), and of the inverse couplings α̃−1, α−1
2 , and α−1

3

for the LR symmetric SU(3)⊗SU(2)L ⊗SU(2)R ⊗U(1)B−L gauge group, above the parity-breaking

scale (μ > ΛR, on the right)

where according to Eq. (19), α1(ΛR) can be determined by the SM beta function for μ < ΛR,
starting from the known value at the electroweak scale α1(MZ) and 
owing up to the matching
point ΛR. The unknown scale ΛR is pinpointed by the matching Eq. (20) as shown in the
ˇgure.

The analytical solution is

ln
(

ΛGUT

MZ

)
= 2π

(
α−1

2 − α−1
3

c3 − c2

)
=

12π

23
(
α−1

2 − α−1
3

)
, (21)

ln
(

ΛR

MZ

)
= 2π

(
Aα−1

1 + Bα−1
2 + Cα−1

3

)
, (22)

where αi = αi(MZ) are the couplings evaluated at the electroweak scale μ = MZ , and

A =
(

3
5
c2 +

2
5
c̃ − c1

)−1

=
5
21

, (23)

B =
2A

5

(
c̃ − c3

c3 − c2
− 3

2

)
= −3

7
, (24)

C =
2A

5

(
c2 − c̃

c3 − c2

)
=

4
21

. (25)

Inserting the actual phenomenological values [25] α−1
1 = 59.01, α−1

2 = 29.57, and
α−1

3 = 8.33 in Eq. (22), we obtain a parity-breaking scale

ΛR

MZ
= 1.2 · 108 (26)

that is halfway between the electroweak scale and the GU scale, which according to Eq. (21)
is predicted to be

ΛGUT

MZ
= 1.3 · 1015. (27)
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While a scale ΛR ≈ 107 TeV and is beyond the rich of present-day experiments, it is in
agreement with the predictions of other ®standard¯ LR models [17Ä19]. It is quite reasonable
to believe that VEV of the R-scalar χR is w ≈ ΛR [15] and v/w ≈ 10−8. At the LHC
energy

√
s = 14 TeV, the existence of tiny corrections of order

√
s/w ≈ 10−6 would be

hardly detected and once more conˇrm that the present scenario could only come from the
physics of neutrinos.

In the minimal LR model, the mass generation can be understood in terms of nonrenor-
malizable effective operators that are generated at low energy below the symmetry-breaking
scale. Mass terms can be generated by bilinear fermionic operators that must be coupled with
Higgs bidoublets or triplets for Dirac or Majorana masses, respectively, in order to preserve
gauge invariance. In the minimal model, a Higgs bidoublet can be written as a product χLχ†

R

of a SU(2)L doublet times a SU(2)R doublet, yielding a factor vw in the low-energy limit
and the Dirac mass terms mDψ̄LψR = γDψ̄LψRvw. A triplet can be built up from the two
SU(2)L doublets (or two SU(2)R doublets), yielding a factor v2 (or w2) in the low-energy
limit, and the Majorana mass terms MLψ̄C

L ψL = γM ψ̄C
L ψLv2 and MRψ̄C

RψR = γM ψ̄C
RψRw2.

Here, the couplings γD and γM are expected to scale like an inverse of some large energy
scale Λ.

Thus, for neutrinos, the mass matrix can be written as

(
ML mD

mD MR

)
= mD

⎛
⎝ y

v

w
1

1 y
w

v

⎞
⎠ , (28)

where y = γM/γD and is of order unity, and the Dirac mass mD is expected to fall in
the MeVÄGeV range like for other fermions. In fact, for charged fermions, y = 0 and the
mass matrix contains only the Dirac terms. In the present argument, neutrinos are taken into
consideration in a single generation. The discussion of important aspects, like mixing among
light neutrinos, would certainly require a full mass matrix, but the existence of mixing terms
would not signiˇcantly change the qualitative nature of the argument. The eigenvalues of the
mass matrix in Eq. (28) show the usual seesaw behaviour of a light neutrino νL

M(νL) =
y2 − 1

2

( v

w

)
mD + O

(
v2

w2

)
(29)

and a heavy neutrino νR

M(νR) = y
(w

v

)
mD + O

( v

w

)
. (30)

Assuming that v/w ≈ MZ/ΛR ≈ 10−8, the mass of the light neutrino νL would be pushed
below the eV scale, while the heavy neutrino νR would be conceivable with a mass of
M(νR) = mD · 108 ≈ 108 MeV = 100 TeV. At the LHC energy, the ratio

√
s/M(νR) ≈ 0.1;

however, the heavy neutrino interacts only through the heavy gauge bosons WR and Z ′ with
an effective weak coupling that scales like M2

WL
/M2

WR
= v2/w2 ≈ 10−16 compared to the

light neutrino. Thus, its sterile nature would prevent its detection anyway. Astrophysical
effects could be considered as the large mass of the heavy neutrino would imply important
gravitational effects, and sterile neutrinos could in part account for the dark matter of the
Universe.
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To summarize, the simplest minimal LR extension of the SM has been studied in the high
energy limit. Some consequences of the GU hypothesis have been explored assuming that the
parity-breaking scale ΛR is the only relevant energy above the electroweak scale up to GU.
In this scenario, which is shown to be compatible with the observed neutrino phenomenology,
the parity-breaking scale and the heavy boson masses are pushed up to 107 TeV, which is
beyond the reach of present-day experiments. Only an almost sterile right-handed neutrino
with a mass M(νR) of ≈ 100 TeV could exist below that scale.
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