ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

ИЗУЧЕНИЕ СЕЧЕНИЯ РЕАКЦИИ (n, α) НА ИЗОТОПАХ ХРОМА

В. А. Хрячков, И. П. Бондаренко, Т. А. Иванова, Б. Д. Кузьминов, Н. Н. Семенова, А. И. Сергачев Федеральное государственное унитарное предприятие «Государственный научный центр Российской Федерации —

Физико-энергетический институт им. А.И.Лейпунского», Обнинск, Россия

Сечения реакции (n, α) на изотопах хрома играют огромную роль в радиационной стойкости нержавеющей стали, которая широко используется в реакторостроении. В библиотеке EXFOR имеется лишь ограниченный набор экспериментальных данных для этой реакции, и они в основном относятся к области энергий нейтронов в окрестности 14 МэВ. Экспериментальные данные для вероятности реакции (n, α) в области энергий, характерных для нейтронов деления, практически отсутствуют. В данной работе представлены результаты изучения реакций ⁵⁰Cr (n, α) и ⁵²Cr (n, α) . Показано, что оценка библиотеки ENDF/B VII для реакции ⁵⁰Cr (n, α) приблизительно в 20 раз выше, чем наши экспериментальные данные. Кроме того, в функции возбуждения реакции ⁵⁰Cr (n, α) наблюдается структура, не предсказываемая ни одной из библиотек. Впервые были получены значения сечения реакции ⁵²Cr (n, α) для нейтронов реакторного диапазона энергий.

The (n, α) reaction cross section of chromium isotopes has a significant role in radiation resistance of stainless steel, which is wildly used in nuclear reactor industry. In EXFOR there is only a limited amount of experimental data for this reaction and mainly they take place at 14 MeV. The experimental data for (n, α) reaction probability in fission neutron energy range are almost absent. In this work, results for 50 Cr (n, α) and 52 Cr (n, α) reaction excitation function investigations are presented. It was shown that ENDF/B VII library for 50 Cr (n, α) reaction has an estimation that is more than 20 times higher than the result of our measurement. Furthermore, we observe irregularity in energy dependence of 50 Cr (n, α) cross section which is not predicted by any library. The experimental data for 52 Cr (n, α) reaction in the reactor neutron energy region were obtained for the first time.

PACS: 25.40.-h; 28.20.-v; 28.41.Qb; 29.30.Ep; 29.40.Cs

введение

Ядерные реакции, протекающие под действием быстрых нейтронов и приводящие к образованию газообразных продуктов, например гелия или водорода, во многом определяют радиационную стойкость материалов. Особенно остро данная проблема стоит для конструкционных материалов, поскольку они наиболее широко используются при создании различных механизмов и узлов ядерно-энергетических установок. Проведенный анализ показал, что, несмотря на большую практическую значимость этих элементов, для ряда из них, например для изотопов хрома, набор экспериментальных исследований по измерению сечения (n, α) чрезвычайно беден и ограничивается работами, выполненными для нейтронов с энергией 14 МэВ [1–3]. В таблице приведены содержание в природной смеси разных изотопов хрома и энергия (n, α) -реакции.

Распространенность в природе разных изотопов хрома и энергия (n, α) -реакции, протекающей на них

Изотоп	Содержание в природе, %	Q реакции, МэВ
⁵⁰ Cr	4,345	0,3213
52 Cr	83,489	-1,2097
⁵³ Cr	9,501	1,7903
$^{54}\mathrm{Cr}$	2,365	-1,5466

На рис. 1 приведено состояние дел с экспериментальными данными и оценками для разных изотопов хрома. Анализ приведенных данных показывает, что в ряде случаев данные разных авторов могут отличаться на десятки процентов. В области же энергий нейтронов, приближенной к реакторному диапазону, экспериментальные данные полностью отсутствуют. Следствием этого является и большой разброс в имеющихся теоретических оценках энергетического хода сечения, который показан на рис. 1. На рис. 2 показано отношение сечения реакции 50 Cr (n, α) , даваемого библиотекой ENDF/B VII, к оценке

Рис. 1. Существующие к настоящему времени экспериментальные данные и теоретические оценки для изотопов Cr: *a*) 50 Cr; *b*) 52 Cr; *b*) 52 Cr; *b*) 54 Cr

Рис. 2. Отношение сечений 50 Cr (n, α) , приводимых библиотеками ENDF/B VII и JENDL 3

библиотеки JENDL. Разница в сечении в области малых энергий нейтронов достигает 27 раз! Имеющееся разногласие между различными библиотеками может быть устранено только при появлении новых экспериментальных данных.

ЭКСПЕРИМЕНТ

Для измерения сечения реакции 50 Cr (n, α) 47 Ti использовалась твердая мишень из хрома с толщиной покрытия 365 мкг/см², в которой на долю изотопа 50 Cr приходилось 96,8%. Содержание других изотопов хрома составило: 52 Cr — 2,98%, 53 Cr — 0,18% и 54 Cr — 0,04%. Полная масса мишени — 5,15 мг. Мишень была нанесена на золотую фольгу толщиной 84 мг/см².

Мишень ⁵²Сг была нанесена на золотую фольгу толщиной 190 мг/см². Диаметр мишени 30,9 мм; толщина слоя ⁵²Сг составляла 280 мкг/см². Изотопный состав мишени был следующим: ⁵⁰Сг — 0,1 %, ⁵²Сг — 99,5 %, ⁵³Сг — 0,3 % и ⁵⁴Сг — 0,1 %. Полная масса мишени ⁵²Сг составляла 2,1 мг.

Мишени поочередно помещались в детектор, представляющий собой ионизационную камеру с сеткой Фриша, заполненную смесью 97 % Kr + 3 % CH₄ при давлении 3 атм. Использование водородосодержащего метана в детекторе, работающем в потоке быстрых нейтронов, приводит к тому, что в рабочем объеме камеры рождается большое количество протонов отдачи, являющихся фоном по отношению к изучаемому эффекту. Однако попытка использовать смесь криптона с углекислотой показала, что фон от (n, α) -реакции, протекающей на кислороде-16, также велик. Причем при использовании цифровых методов спектрометрии сигналов оказывается легче выделить полезные сигналы из большого количества импульсов, принадлежащих протонам, нежели из меньшего числа импульсов от α -частиц реакции ¹⁶O (n, α) .

Первоначальный опыт расположения мишени на катоде камеры показал, что материал катода при облучении его быстрыми нейтронами становится интенсивным источником α -частиц, возникающих в результате (n, α) -реакций, протекающих на компонентах материалов, входящих в его состав, и на кислороде и азоте, растворенных на его поверхности. Для уменьшения фона был использован опыт проведения работ по изучению (n, α) -

Рис. 3. Схема конструкции детектора: I — мишень ⁵⁰Cr; 2 — мишень ²³⁸U; 3 — анод импульсной ионизационной камеры; 4 — общий катод; 5 — сетка Фриша; 6 — охранные электроды; 7 — делитель; 8 — золотые нити

реакций, протекающих на компонентах рабочего газа ионизационной камеры [4, 5]. Для этого мишень была прикреплена к золотым нитям, крепившимся к первому охранному электроду камеры. В результате мишень находилась в промежутке катод–сетка на расстоянии 1 см от катода (рис. 3). Золотые нити служили не только для фиксации мишени, но и для подачи на нее электрического потенциала, соответствующего месту расположения мишени. В этих условиях сигналы от α -частиц, рождающихся на поверхности мишени, можно отличить от сигналов частиц, рождающихся на катоде или в самом рабочем газе. Для этого необходимо измерять время дрейфа наиболее удаленных от анода электронов. В случае если частицы рождаются на катоде, то для них всех последние электроны будут приходить из области вблизи катода и им придется преодолеть расстояние 4 см. Если частицы вылетают из мишени, электроны должны продрейфовать расстояние 3 см, разделяющее мишень и анод. Анализ времени дрейфа позволяет разделить частицы по месту их рождения, а следовательно, понизить фон от паразитных реакций. Однако столь детальный анализ формы анодного и катодного сигналов может быть выполнен только средствами цифровой обработки сигналов.

Сигналы, снимаемые с анода и катода ионизационной камеры, после усиления подавались на оцифровщик формы импульсов (LeCroy 2262), который превращал входной сигнал в последовательность чисел, соответствующих амплитудам входного сигнала в разные моменты времени. Оцифрованные сигналы сохранялись на жестком диске персонального компьютера для дальнейшей обработки.

Разработанное программное обеспечение позволяло извлекать из цифровых сигналов следующую информацию: амплитуды анодного и катодного сигналов и времена их начала и окончания. Совместный анализ информации, получаемой для каждого события, позволял нам определить энергию регистрируемой частицы, место ее рождения и ее тип. Каждый из измеряемых параметров позволяет значительно понизить вклад фона и, как следствие, повысить надежность в определении числа событий, принадлежащих изучаемой реакции. Измерения, описанные в данной работе, были выполнены на ускорителе ЭГ-1 ГНЦ РФ–ФЭИ. Нейтроны генерировались в реакции D(d, n) на твердой титановой мишени толщиной 1 мг/см². Измерения были выполнены в интервале энергий нейтронов от 4,7 до 7,2 МэВ.

Для мониторирования нейтронного потока использовалась плоскопараллельная камера, которая содержала тонкий слой ²³⁸U. Урановая мишень была смонтирована на общем катоде двух камер в геометрии back-to-back с основной камерой (см. рис. 3). Содержание изотопа ²³⁸U в мишени составляло 99,99%. Масса ²³⁸U была определена методом α -спектрометрии и составила 4,60 мг. Мертвое время в мониторном и основном каналах регистрации было идентично из-за особенностей реализованного метода накопления информации. Таким образом, нейтронный поток измерялся в области, очень близкой к положению хромовой мишени. Поправка на разницу в положении слоя урана и хрома (1 см) вносилась на стадии обработки.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Результаты измерения сечения реакции 50 Cr (n, α) 47 Ti приведены на рис. 4. Там же отражены оцененные данные библиотек ENDF/B VII и JENDL 3 и известные экспериментальные данные. Измерения были выполнены в диапазоне энергии нейтронов 4,7–7,2 МэВ.

Рис. 4. Сравнение экспериментальных данных с оцененными данными различных библиотек. Точки — данные сечения реакции ⁵⁰Cr (n, α) ⁴⁷Ti настоящей работы, ромбы — данные Matsuyama (данные из EXFOR), сплошная кривая — данные библиотеки ENDF/B VII, штриховая — данные библиотеки JENDL 3

Совершенно очевидно, что результаты наших измерений полностью противоречат оценке, даваемой ENDF/B VII. В ряде точек отношение сечения, даваемого ENDF/B VII, к нашим данным достигает 50. Заметно лучше наши экспериментальные данные согласуются с оценками, даваемыми библиотекой JENDL, хотя в большинстве наши данные лежат ниже. Если интерполировать полученные данные дальше по энергетической шкале,

Рис. 5. Энергетическая зависимость сечения деления $^{\rm 238}{\rm U}$

то они также будут хорошо согласовываться с библиотекой JENDL. Стоит отметить, что в области энергии нейтронов ~ 6 МэВ в экспериментальных данных наблюдается некая «ступенька», которая отсутствует во всех оценках.

Одна из возможных причин появления такой структуры — сдвиг по энергии нейтронов во время измерений. Такой эффект возможен, если принять во внимание то, что сечение деления ²³⁸U в этой области энергий быстро меняется из-за открывающейся возможности эмиссионного деления (рис. 5).

Для того чтобы исключить вероятность подобной ошибки, было проведено расчетное исследование. В своих расчетах мы исходили из того, что если имеется сдвиг в энергии нейтронов, то достаточно произвести расчет сечения с правильной энергией (правильным сечением деления 238 U) и наблюдающаяся ступенька в сечении реакции 50 Cr (n, α) 47 Ti исчезнет (сечение станет гладким, как это предсказывают все библиотеки). Расчеты были выполнены для сдвигов по энергии нейтронов от -200 до 200 кэВ с шагом 50 кэВ. Частично результаты расчета показаны на рис. 6. Как видно из рис. 6, вносимый в энер-

Рис. 6. Результаты расчета сечения реакции 50 Cr (n, α) 47 Ti в предположении о существовании сдвига по энергии нейтронов

Рис. 7. Сечение реакции 52 Cr (n, α) 49 Ti по оцененным данным библиотек ENDF/B VII (сплошная кривая), JENDL 4.0 (штриховая), BROND (пунктирная) и полученные экспериментальные данные (точки)

гию сдвиг не приводит к исчезновению особенности в сечении, а лишь смещает наблюдаемую структуру вдоль оси энергий нейтронов.

Результаты измерения сечения реакции 52 Cr (n, α) 49 Ti приведены на рис. 7. На нем также показаны оцененные данные библиотек ENDF/B VII, JENDL 4.0 и BROND.

Имеющиеся к началу настоящей работы экспериментальные данные двух авторов по измерению сечения реакции 52 Cr (n, α) 49 Ti для значения $E_n = 14$ МэВ показаны на рис. 1, δ . Расхождение между авторами достигает пяти раз. Данные для нейтронов с меньшей энергией отсутствуют. Неудивительно, что в этих условиях существует и разница между оценками, даваемыми разными библиотеками. Так, для энергии нейтронов 6,75 МэВ разница между оценкой ENDF/B VII и оценкой JENDL 4.0 достигает 100 %.

В данной работе впервые была получена информация о значениях сечения реакции 52 Cr (n, α) 49 Ti для нейтронов с энергиями ниже 14 МэВ. Из рис. 7 хорошо видно, что наши данные неплохо согласуются с оцененными данными библиотеки ENDF/B VII. А оцененные данные библиотек JENDL 4.0 и BROND лежат гораздо ниже полученных нами данных.

ЗАКЛЮЧЕНИЕ

Разработанный спектрометр способен эффективно работать с твердыми мишенями в условиях большого фона, возникающего в результате паразитных реакций. Проведены измерения сечения реакции 50 Cr (n, α) 47 Ti для нейтронов в диапазоне 4,7–7,2 MэB. Проведенные исследования показали, что оценки сечения, даваемые библиотекой ENDF/B VII, сильно отличаются от экспериментальных значений. Оценка, даваемая JENDL, хотя и находится намного ближе к эксперименту, не совпадает с ним ни по среднему значению сечения, ни по форме функции возбуждения.

Впервые были получены значения сечения реакции 52 Cr (n, α) 49 Ti для нейтронов с энергиями ниже 14 МэВ.

586 Хрячков В.А. и др.

СПИСОК ЛИТЕРАТУРЫ

- 1. Derndorfer C. et al. Investigation of the 50 Cr (n, α) 47 Ti Reaction at $E_n = 14.1$ MeV // Zeit. Physik A. Hadrons and Nuclei. 1981. V. 301, No. 4. P. 327–334.
- 2. Dolja G.D. et al. // Proc. of Intern. Conf. on Neutron Physics. Kiev, 1973. V.3. P. 131-134.
- 3. Grimes S. M. et al. // Phys. Rev. C. 1979. V. 19. P. 2127.
- 4. Giorginis G. et al. The Cross Section of the 16 O (n, α) 13 C Reaction in the MeV Energy Range // Proc. of Intern. Conf. «NDST 2007». Nice, 2007. P. 525–528.
- 5. Khryachkov V.A., Bondarenko I.P., Kuzminov B.D. Study of (n, α) Reaction Cross Section on a Set of Light Nuclei // Proc. of XVIII Intern. Seminar on Interaction of Neutrons with Nuclei «ISINN-18». Dubna, 2011.

Получено 8 ноября 2012 г.