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It is suggested that proton elastic scattering on atomic electrons allows a precise measurement of
the proton charge radius. The main advantage is that inverse kinematics allows one to access with a
huge cross section very small values of transferred momenta, up to four orders of magnitude smaller
than the ones presently achieved.

� ¸¸³ É·¨¢ ¥É¸Ö ¢μ§³μ¦´μ¸ÉÓ ¨§³¥·¥´¨Ö · ¤¨Ê¸  ¶·μÉμ´  ´  μ¸´μ¢¥ ¤ ´´ÒÌ ¶μ · ¸¸¥Ö´¨Õ ¶·μ-
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¶·μÉμ´ .

PACS: 13.40.Em

INTRODUCTION

The problem of the proton size has recently been object of large interest, due to the recent
experiment on muonic hydrogen by laser spectroscopy measurement of the νp(2S−2P )
transition frequency [1]. The result on the proton charge radius rc = 0.84184(67) fm
obtained in this experiment is one order of magnitude more precise but smaller by ˇve
standard deviations compared to the best value previously assumed rc = 0.8768(69) fm [2]
(CODATA). Previous best measurements include techniques based on hydrogen spectroscopy,
which are more precise than, but compatible with, electronÄproton elastic scattering at small
values of the four-momentum transfer squared Q2. The most recent result from electronÄ
proton elastic scattering, rc = 0.879(5)stat(4)syst(2)model(4)group fm, can be found in [3].

While corrections to the laser spectroscopy experiments seem well under control in the
framework of QED and may be estimated with a precision better than 0.1%, in case of
ep elastic scattering the best precision that has been achieved is of the order of few percent.
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Different sources of possible systematic errors to the muonic experiment have been discussed;
however, no deˇnite explanation of this difference has been given yet (see [5] and references
therein).

Recent works have been devoted to the scattering of a proton projectile on an elec-
tron target (see [6] and references therein). The possibility to build beam polarimeters for
high-energy polarized (anti)proton beams has been discussed [7]. Experiments have been
done [8, 9] and are ongoing with the aim to understand the experimental fact that a proton
beam circulating through a polarized hydrogen target gets polarized [10]. The possibility
to polarize antiproton beams would open a wide domain of polarization studies at the GSI
Facility for Antiproton and Ion Research (FAIR) [11, 12]. Assuming C-invariance in elec-
tromagnetic interactions, the (elastic and inelastic) reactions p + e− and p̄ + e+ are strictly
equivalent.

In [6], the cross section and the polarization observables for proton electronÄelastic scatter-
ing, in a relativistic approach assuming the Born approximation, were derived. The relations
connecting kinematical variables in direct and inverse kinematics were given. In particular,
it was shown that large polarization effects appear at beam energies around 15 GeV. More-
over, the transferred momenta are very small even when the proton energy is in the GeV
range. In this work, we focus on the second issue and apply to the problem of a precise and
consistent determination of the proton radius. The kinematics of protonÄelectron scattering is
extremely peculiar and interesting in this respect.

In the elastic interaction between a proton and an electron, assuming that the interaction
occurs through the exchange of a virtual photon of four-momentum k = (ω,k), the obser-
vables can be expressed as functions of two form factors, electric GE and magnetic GM ,
which are functions of Q2 = −k2 only.

The electric form factor GE(Q2) in the nonrelativistic limit is related to the charge
distribution through a Fourier transform. For small values of Q2, one can develop GE(Q2)
in a Taylor series expansion:

GE(Q2) = 1 − 1
6
Q2〈r2

c 〉 + O(Q2), (1)

where one takes into account the fact that the density (being the square of the wave function)
is an even function of the spatial distance r, whereas the scalar product k·r is an odd function.
The root mean square radius is the derivative of the form factor at Q2 = 0:

〈r2
c 〉 = −6

dGE(Q2)
dQ2

∣∣∣∣
Q2=0

. (2)

The value itself of GE(Q2 = 0) = Ze = 1 is given by the normalization to the charge
(assuming e = 1); Z is the atomic number.

Form factors are derived from unpolarized ep scattering through the Rosenbluth separation
method: measurements of the unpolarized cross section at ˇxed Q2 for different angles allow
one to extract the electric and magnetic form factors. The polarization method [13] has
recently been applied [14], providing very precise measurements of the ratio GE/GM up to
large values of Q2 � 9 GeV2. The larger precision comes from the fact that in this case
one measures a polarization ratio in which radiative corrections (at ˇrst order) cancel and the
systematics effects related to the beam polarization and to polarimetry are essentially reduced.
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Radiative corrections and Coulomb corrections have to be applied to ep scattering ex-
periments, in particular for unpolarized measurements. Besides the problems related to the
fact that there is no model-independent way to calculate those radiative corrections which
depend on the hadron structure and that correlations exist in extracting form factors from the
Rosenbluth ˇt [15], one has to face the extrapolation of the data to Q2 = 0 as discussed
in [3]. The smallest value of Q2 reached in that experiment was 0.004 GeV2. The precision
on the measurement of the proton radius is strongly related to the extrapolation for Q2 → 0.
Recent analysis [4] shows that, although very precise data have been obtained for the electric
form factor of the proton at low Q2, there is still place for model dependence. The functional
form of the ˇt function is essential to get the slope at Q2 → 0. According to the model
used, the same data may be consistent with the estimation of the radius from muonic atom or
from CODATA, quoted above, which are themselves inconsistent at 5σ level. Keeping the
systematic error of the measurement as in [3], using electron at rest or moving in a low-energy
collider, one could extend the range of Q2 from 10−3 to 10−7 GeV2, giving severe constraints
to the ˇtting procedure. The possibility to access much smaller values of Q2 is offered by
the elastic reaction induced by a proton beam on an electron target.

DIFFERENTIAL CROSS SECTION AND INVERSE KINEMATICS

Let us consider the reaction

p(p1) + e(k1) → p(p2) + e(k2), (3)

where particle momenta are indicated in parentheses and k = k1 − k2 = p2 − p1. The
expression of the differential cross section for unpolarized protonÄelectron scattering, in
the coordinate system where the electron is at rest, can be written, in the Born approxi-
mation, as

dσ

dQ2
=

πα2

2m2|p|2
D
Q4

, (4)

D = −Q2(−Q2 + 2m2)G2
M + 2

[
G2

E + τG2
M

] [
−Q2M2 +

1
1 + τ

(
2mE − Q2

2

)2
]

, (5)

where α = 1/137 is the electromagnetic ˇne constant; τ = Q2/4M2 and GE,M are the
Sachs electric and magnetic form factors; m (M ) is the electron (proton) mass; p is the
three-momentum of the proton beam; and E is the total energy of the proton beam.

Similarly to ep scattering, the differential cross section diverges as (Q2)2 when Q2 → 0.
This is a well-known result, which is a consequence of the one-photon exchange mechanism
and allows one to reach very large cross sections. The expression (5) differs from the
Rosenbluth formula [16], as additional terms depending on the electron mass cannot be
neglected. The electric contribution to the cross section dominates, being in all the allowed Q2

range, ∼ 107 times larger than the magnetic one.
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Fig. 1. Maximum value of the four-momen-

tum transfer squared as a function of the pro-
ton beam kinetic energy, Ep

Fig. 2. Difference of the kinetic energy of the scat-

tered proton from the beam kinetic energy, ΔE2, for
Ep = 100 MeV, as a function of the sine of the proton

scattering angle

Let us consider the case when the proton-beam kinetic energy, Ep, is under the pion
threshold for pp reactions, Ep = 100 MeV. This helps in reducing the hadronic background.

The properties of inverse kinematics has been discussed in [6]. It has been shown that
for a given value of E, the maximum four-momentum transfer squared is

(Q2)max =
4m2(E2 − M2)

M2 + 2mE + m2
. (6)

Being proportional to the electron mass squared, Q2 is restricted to very small values.
In Fig. 1, we report Q2

max as a function of the proton kinetic energy, in the MeV range.
One can see that the values of transferred momenta are very small: for a proton beam with
kinetic energy Ep = 100 MeV, (Q2)max = 0.2 · 10−6 GeV2.

From energy and momentum conservation, one ˇnds the following relation between the
angle θe and the energy ε2 of the scattered electron:

cos θe =
(E + m)(ε2 − m)
|p|

√
(ε22 − m2)

, (7)

which shows that cos θe � 0 (the electron can never be scattered backward). In the inverse
kinematics, the available kinematical region is reduced to small values of ε2:

ε2,max = m
2E(E + m) + m2 − M2

M2 + 2mE + m2
, (8)

which is proportional to the electron mass. From momentum conservation, on can ˇnd the
following relation between the kinetic energy E2 and the angle θp of the scattered proton
(Fig. 2):

E±
2 + M =

(E + m)(M2 + mE) ± M(E2 − M2) cos θp

√
m2

M2
− sin2 θp

(E + m)2 − (E2 − M2) cos2 θp
, (9)
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which shows that for one proton angle there may be two values of the proton energy (and
two corresponding values for the recoil-electron energy and angle, and for the transferred
momentum Q2). The two solutions coincide when the angle between the initial and ˇnal
proton takes its maximum value, which is determined by the mass ratio of the electron and
the scattered proton, sin θp,max = m/M = 0.544 · 10−3. Hadrons are scattered from atomic
electrons at very small angles, and the larger is the hadron mass, the smaller is the available
angular range for the scattered hadron. The difference between the scattered proton kinetic
energy and the beam kinetic energy is shown as a function of the proton scattering angle
in Fig. 2. The proton kinematics is very close to the beam, which makes the detection very
challenging. However, a magnetic system with momentum resolution of the order of 10−4

can provide at least the measurement of the energy of the scattered proton. This would allow
a coincidence measurement which helps in reducing the possible background.

While the proton is emitted in a narrow cone, the electron is scattered up to 90◦. The
energy dependence as a function of the cosine of the angle for the recoil electron is shown
in Fig. 3. The detection of electrons in the MeV energy range is currently available.

The differential cross section as a function of cos θe is shown in Fig. 4 in the angular
range 10 � θe � 80◦. It is large when the electron angle is close to 90◦ and monotonically
decreasing. The cross section, integrated in this angular range, is 25 · 104 mb. Assuming a
luminosity L = 1032 cm−2 · s−1 with an ideal detector with an efˇciency of 100%, a number
of � 25 · 109 events can be collected in one second. Therefore, the reaction (3) allows one
to reach very small momenta with huge cross section. The very speciˇc kinematics requires
a dedicated experiment. One possibility is to detect the correlation between angle and energy
of the recoil electron. The detection of the energy of the scattered proton in coincidence is
feasible, in principle, with a magnetic system.

Let us stress the importance of taking into account the lepton mass. The approximation of
zero electron mass, commonly used in leptonÄhadron scattering, should be carefully consid-
ered. Another example is given by low-energy μ + p elastic scattering. In the hundred MeV

Fig. 3. Kinetic energy of the recoil electron as a

function of the cosine of the electron scattering

angle for beam kinetic energy Ep = 100 MeV

Fig. 4. Differential cross section as a function

of the cosine of the electron scattering angle for

beam kinetic energy Ep = 100 MeV
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Fig. 5. (Color online) Ratio R of the differential cross section for muon to electron elastic scattering,
as a function of the lepton scattering angle for three values of the beam momentum |p| = 100 MeV

(black, solid line), |p| = 150 MeV (red, dashed line), |p| = 200 MeV (green, dotted line)

region, the μp cross section largely exceeds the e + p cross section. The corrections due to
the mass may reach one order of magnitude, in particular at backward angles. The ratio of
the differential cross section, R = σ(μp)/σ(ep), is shown in Fig. 5 for three values of the
beam momentum. One can see that this ratio varies monotonically with the angle, reaching
its maximum (up to a factor of ten) for backward scattering.

CONCLUSIONS

We suggested a possibility to measure the proton radius, based on the small value of
the transfer momentum squared (even for relatively large energies of colliding hadrons)
achievable in pe elastic scattering. This is a general characteristic of all reactions of elastic
and inelastic hadron scattering by atomic electrons (which can be considered at rest). We
illustrated the accessible kinematical Q2 range and showed that one could improve by four
orders of magnitudes the lower limit at which elastic ep scattering experiments have been
done. In such kinematical conditions, the electric contribution to the cross section dominates
and the magnetic contribution can be safely neglected. Therefore, there is no need for
Rosenbluth separation and/or polarization method to determine GE . This allows a precise
measurement of the proton radius, decreasing the errors due to the extrapolation for Q2 → 0.
For completeness, let us mention polarization effects in protonÄelectron scattering, which have
indeed been measured [10]. In [6], it was shown that polarization observables are very small
at low energy, but sizable in the GeV range. As for ep elastic scattering, the ratio GE/GM

can be derived from the ratio of double spin observables [13], in our case two correlation
coefˇcients, for example, Ctl/Ctt. Having a proton beam and an electron target both polarized
in the direction normal to the scattering plane gives access to the product of GE and GM ,
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once the unpolarized cross section is known:

DCnn = −4mMQ2GEGM . (10)

For the problem discussed in this paper, any heavy target, Au, Pb, W, can be considered
as a good target. Electron jet targets, or low-energy electron beams in a collider have already
been used. Low-energy electronÄion colliders are under study [17]. Note that in the case of
colliding ions, tuning the energy of the proton and electron beams, one could reach larger Q2

values and ˇll the gap between the very low value discussed here 10−6 and the minimum
value experimentally reached up to now 10−3. The measurement requires the selection of
elastic events with the energy and angle correlation for the electron. The protons are emitted
in a narrow cone around the beam direction, with energy close to the beam one.

The theoretical limit of our approach as discussed in [6] is related to the validity of
the Born approximation (scattering through one-photon exchange): at very small energies,
multiphoton exchanges may lead to a quasi-bound state p + e, at higher energies, over the
pion threshold, inelastic reactions start to contribute. Therefore, we suggested a kinematical
range below pion emission threshold.

In summary, the main advantages of the proposed reaction are the possibility of access-
ing low Q2 values with high statistics, and negligible physical background. A momentum
resolution of the order of 10−4 for an emitted proton has been achieved in high-resolution
spectrometers, for example, the dispersive spectrometer SPES1 (Saturne) [18]. More re-
cently, high-resolution detection for protons at zero degrees is reported for the facility RIBF,
RIKEN [19].
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