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T-ODD CORRELATIONS IN (n, α γ) REACTIONS
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The T-odd correlation (kα · [σ × kγ ])(kα · kγ), where σ is the vector of the neutron polarization
and the symbols k denote the respective linear momenta (all vectors are unit ones), in the sequential
alpha-gamma cascade induced by a thermal-neutron capture is studied. The study is performed in the
one-resonance approximation. Both the ˇnal-state interaction of the alpha particle with the residual
nucleus and the actual T-noninvariant phase shift are considered as possible origins of the correlation.
The problem of suitable target isotopes is analyzed. Related correlations in other neutron- and proton-
induced reactions are discussed.

ˆ¸¸²¥¤μ¢ ´  T-´¥Î¥É´ Ö ±μ··¥²ÖÍ¨Ö (kα · [σ × [kγ ])(kα · kγ), £¤¥ σ Å ¢¥±Éμ· ¶μ²Ö·¨§ Í¨¨
´¥°É·μ´ ,   ¸¨³¢μ² ³¨ k μ¡μ§´ Î ÕÉ¸Ö ¸μμÉ¢¥É¸É¢ÊÕÐ¨¥ ¨³¶Ê²Ó¸Ò (¢¸¥ ÔÉ¨ ¢¥±Éμ·Ò ¶μ¤· §Ê³¥-
¢ ÕÉ¸Ö ¥¤¨´¨Î´Ò³¨), ¢ ¶μ¸²¥¤μ¢ É¥²Ó´μ³  ²ÓË -£ ³³ -± ¸± ¤¥, ¢μ§´¨± ÕÐ¥³ ¢ ·¥§Ê²ÓÉ É¥ § Ì¢ É 
É¥¶²μ¢μ£μ ´¥°É·μ´ . ˆ¸¶μ²Ó§Ê¥É¸Ö ¶·¨¡²¨¦¥´¨¥ μ¤´μ£μ ·¥§μ´ ´¸ . ‚ ± Î¥¸É¢¥ ³¥Ì ´¨§³μ¢, §  ¸Î¥É
±μÉμ·ÒÌ ³μ¦¥É ¢μ§´¨±´ÊÉÓ ÔÉ  ±μ··¥²ÖÍ¨Ö, · ¸¸³ É·¨¢ ÕÉ¸Ö ± ± ¢§ ¨³μ¤¥°¸É¢¨¥  ²ÓË -Î ¸É¨ÍÒ
¨ Ö¤· -μ¸É É±  ¢ ±μ´¥Î´μ³ ¸μ¸ÉμÖ´¨¨, É ± ¨ ·¥ ²Ó´μ¥ ´ ·ÊÏ¥´¨¥ ¨´¢ ·¨ ´É´μ¸É¨ μÉ´μ¸¨É¥²Ó´μ
μ¡· Ð¥´¨Ö ¢·¥³¥´¨. �´ ²¨§¨·Ê¥É¸Ö ¶·μ¡²¥³  ³¨Ï¥´¨, Ê¤μ¡´μ° ¤²Ö ´ ¡²Õ¤¥´¨Ö ±μ··¥²ÖÍ¨¨. �¡-
¸Ê¦¤ ÕÉ¸Ö ¸μμÉ¢¥É¸É¢ÊÕÐ¨¥ ±μ··¥²ÖÍ¨¨ ¢ ¤·Ê£¨Ì ·¥ ±Í¨ÖÌ, ¢Ò§¢ ´´ÒÌ ´¥°É·μ´ ³¨ ¨²¨ ¶·μÉμ´ ³¨.

PACS: 24.70+s

INTRODUCTION

The three- and the ˇve-vector P-even T-odd (pseudo-T-noninvariant) correlations of ˇs-
sion products Å the so-called TRI- [1, 2] and ROT-effect [3] Å are now the subject of active
investigations and discussions [4, 5]. In the ˇssion process, however, these effects manifest
themselves in extremely complicated events. A huge number of possible exit microchannels
which differ by the masses of fragments, their spins, relative angular momentum, etc. con-
tribute. Furthermore, the emission of some number of various unregistered light particles
attends any ˇssion event and introduces distortions. These and other properties make any
correlation of ˇssion fragments with other emitted particles very hard for interpretation. The
(n, αγ) process looks essentially simpler and nevertheless offers some analogous properties.
In particular, one would expect the same P-even T-odd correlations. The idea to consider
such a reaction as a process which is reference one for the study of the TRI-effect in ˇssion is
realized in the experiment [6]. The 10B target is used. In the paper [7] a theoretical interpre-
tation of the experimental result obtained in [6] Å zero TRI-effect Å is presented. The fact
that a T-odd effect is not necessarily an actual T-violating one is declared in [7]. It is also
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declared (before the observation of the ROT-effect) that ˇve-vector and higher-rank T-odd
correlations may manifest themselves in this reaction in the case that other targets are used.

In the current paper, these properties of the (n, αγ) process are considered in detail.
The formalism of the angular correlations in two-step reactions suitable for description of an
arbitrary correlation is presented. The selection rules classifying T-odd effects into zero and
nonzero ones are discussed. A scheme which may be used to search for actual T-violating
effect is demonstrated. Suitable target isotopes are proposed. The reactions (n, pγ), (n, γα),
and (p, αγ) are also considered.

1. FORMALISM OF THE ANGULAR CORRELATIONS

The deˇnitions of angular correlations are formulated in a variety of ways. The vector
form serves usually for their notation. As an example, the correlation related to the TRI-
effect in the ternary ˇssion is deˇned by the three-vector form (kff · [σ × kα]), where the
subscripts ff and α denote the type of emitted particles: the ˇssion fragment and the alpha
particle. If the axis of quantization is chosen to be parallel to the vector of polarization σ,
the explicit kinematic form of this correlation is the following:

∑
m=−1,1

(1m1 − m|10)
4π

3
Re [Y m

1 (ϑff , φff )Y −m
1 (θα, φα)]. (1)

The correlation associated with the ROT-effect is deˇned by the ˇve-vector form (kff · [σ×
kα])(kff · kα). Evidently, it may be written explicitly in the form of the product of
ˇve Y functions of the rank 1 with the proper vector coupling. However, a much more
convenient expression appears after the convolutions of the Y functions depending on one
and the same arguments:

2∑
m=−2

(2m2 − m|10)
4π

5
Re [Y m

2 (ϑff , φff )Y −m
2 (θα, φα)]. (2)

Naturally, the presented formulas do not depend on types of emitted particles and the dynamics
of the process. In particular, the kinematics of the correlation (kα · [σ×kγ ])(kα ·kγ) denoting
the ROT-effect in the neutron-induced alpha-gamma cascade is expressed by formula (2) with
the replacements of the subscripts: ff → α and α → γ. The current paper is focused on this
example of the ˇve-vector correlation; therefore, sizable expressions of the general formalism
are presented below, being indexed by these subscripts.

The dynamic form of any correlation must evidently be constituted as a bilinear form of the
amplitudes of an investigated process. The overall (i.e., including all possible correlations)
and general (i.e., valid for any sequential two-step cascade of an oriented or nonoriented
sample) expression can be presented as

WIJF (θα, θγ , φα, φγ) =
∑

ρ0
j(I, I ′)εm∗

α

jα
(Lα, L′

α)ε
m∗

γ

jγ
×

×(Lγpγ , L′
γp′γ)εm′∗

j′ (F )
�

I
2�

J
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⎭
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γ J
0 jγ jγ

⎫⎬
⎭×

×
�
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γ 〈J |L′
α |I ′〉∗〈J |Lα |I〉 〈F |L′

γp′γ |J〉
∗〈F |Lγpγ |J〉 .

(3)
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Here the notation
�

b =
√

2b + 1 is used; (jαmαjγmγ |j0) is the ClebshÄGordan coefˇ-
cient, 3 × 3 tables are 9j-symbols; ρm

j (I, I ′) is the statistical tensor of a state in which
spins I and I ′ are mixed; I and I ′ denote the spins of initial compound nucleus state,
J is an intermediate one, and F is a ˇnal state; 〈J |L p |I〉 is the amplitude of a tran-
sition; Lγipγi , L′

γi
p′γi

are the angular momenta and parities of the amplitudes determin-
ing the multipolarities of the transitions; εm

j (lp, l′p′) is the m component of the efˇciency
tensor of the rank j which characterizes the capability of a detector to register a product
which appears in the transition described by the respective pair of the amplitudes. The
sum is over all indices contained in (3) besides I, J, F . A particular correlation is de-
ˇned by the ranks of the statistical tensor j and the efˇciency tensors of the detector
system jα, jγ . For more details concerning the expression (3) and the formulas below,
see the monograph [8].

The efˇciency tensor of an alpha detector jα can be expressed as

εmα

jα
(l, l′) =

1√
4π

l̂l̂′

ĵα

(−1)l′(l0l′0|jα0)Y mα

jα
(θα, φα). (4)

The efˇciency tensor of the gamma detector insensitive to the polarization takes the form

ε
mγ

jγ
(lp, l′p′) =

1
16π

l̂l̂′(−1)l′−1(l1l′ − 1|j0)[1 + pp′(−1)jγ ] S(0)Y mγ

jγ
(θγ , φγ), (5)

where S(r) is the Stokes parameter. The parameter S(0) signiˇes the polarization insensitivity.
The residual nucleus is not registered; therefore, the tensor of the efˇciency of such a
®registering¯ εm′

j′ (F ) should be written as

εm′

j′ (F ) = F̂ δj′0δm′0. (6)

Analysis of the multiresonance problem is a subject of special interest because, as pointed
out in [9], overlapping of resonances of different spin may be the origin of T-odd cor-
relation. If several resonances contribute signiˇcantly to the correlation, then all quan-
tum numbers characterizing the amplitudes should be indexed by the resonances numbers;
the sum over these indices appears. The respective resonance amplitudes should be in-
volved in the formalism. Such a cumbersome formalism requires a presentation in a
full-size paper. One-resonance case, being a particular one, is adequate to explain selec-
tion rules and other qualitative properties of the problem, and to demonstrate the formal
scheme. Because of that, we limit ourselves by it in the current paper. In this case,
the expression of the statistical tensor produced by the polarized s-neutron capture has
the form

ρ0
k(I, I ′) ≡ ρ0

k(I) =
1
4π

QÎ−3
0 k̂Î2ĵ−1

⎧⎨
⎩

I j I0

I j I0

k k 0

⎫⎬
⎭ 〈I0| j |I〉∗〈I0| j |I〉 , (7)

where Q is the degree of the neutron polarization, s = 1/2 denotes neutron spin, j = 1/2 is
the total contributed angular momentum, and k = 1. The quantum number I0 is the spin of
the initial nucleus state, I is the ˇnal one.
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The discussed correlations are characterized by the tensor ranks: jα = 1; jγ = 1; j = 1 for
the TRI-effect and jα = 2; jγ = 2; j = 1 for the ROT-effect, respectively. The Y functions,
presented in formulas (1) and (2), are involved in expression (3) through expressions of the
efˇciency tensors.

The existenceof the ClebshÄGordan coefˇcients and the 9j-symbols in formulas (3)Ä(7)
determines the selection rules for the amplitudes of a certain correlation. Analyzing the
TRI-effect, one can ˇnd a very expressive example of application of the presented formulas
to visualize these rules. Indeed, in the absence of the (parity-conserving or parity-violating)
mixing of even and odd amplitudes, the value of efˇciency tensor of an alpha detector (4)
turns out to be zero because of zero value of the coefˇcient (l0l′0|jα0). The same is true
for a detector of arbitrary heavy particle independently of its spin. The efˇciency tensor of
gamma detector (5) also takes zero value due to the parity-dependent factor contained in the
expression. Thus, in the absence of the mixing of even and odd amplitudes, the TRI-effect
never appears in any sequential cascade. Therefore, the observed TRI-effect in the ternary
ˇssion arises in a simultaneous tripartition in which parity-conserving mixing takes place
(see [7]). The case in which parity violation is taken into account is also considered in [7].
The effect is extremely small because the sole nonzero term must contain the product of two
parity-violating amplitudes.

So, in fact, the TRI-effect is not a peculiarity of the considered process and we now turn
to the discussion of the conditions in which ROT-effect may exist. Let us consider the ˇrst
9j-symbol in expression (3). It is clear that the values of spins of the compound and the
intermediate states must be not less than 1/2 and 1, respectively, for its existence. Further,
if there is no parity mixing in the initial and ˇnal states of the alpha transition, then the
sum of the indices of this coefˇcient is odd and, therefore, it changes the sign under the
permutation of two its lines. This coefˇcient is zero if these two lines are equivalent. Thus,
the interference of two amplitudes of the alpha transfers with different multipolarities is one
of the necessary conditions of the effect. Bilinear combination of these amplitudes in the
sum (3) contains the complex conjugated terms. Due to the change of sign of the 9j-symbol
under the transposition Lα ↔ L′

α, the imaginary part of this combination is survived only.
As a result, the dependence of the correlation formula on the amplitudes of α transition takes
the form

Im
(
〈J |L′

α |I〉∗〈J |Lα |I〉 − 〈J |L′
α |I, p〉 〈J |Lα |I〉∗

)
=

= 2[Γ(L′
α)Γ(Lα)]1/2[sin (Δβ) − wt cos (Δβ)], (8)

where wt denotes the actual T-noninvariant alpha-transition amplitude which is involved in
the formula for generality. The value Δβ = β1 − β2 is the difference of phase shifts of
two amplitudes. For one-resonance case, if the time-reversal invariance is assumed, it is this
difference that simulates the pseudo-T-noninvariant effect. So, it is the second necessary
condition of its existence.

Usually, correlations are considered in another form being normalized by the respective
cross section. In that case, the additional dependence on the amplitudes turns out to be
involved in the denominator:

2[Γ(L′
α)Γ(Lα)]1/2

Γ(L′
α) + Γ(Lα)

[sin (Δβ) − wt cos (Δβ)]. (9)
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The asymptotics of the diverging wave of a charged particle is written as

Gl (η, kr) + iFl (η, kr) ∼ exp (i[kr − η ln 2kr − lπ/2 + βl]), (10)

where η = αZ1Z2

√
μc2/(2E) is the Coulomb parameter. As a result, the difference of phase

shifts has the form

Δβ =
L>∑

λ=L<

arctan
η

λ + 1
, (11)

where L< = min {Lα, L′
α}; L> = max {Lα, L′

α}. In the typical case that ΔL = 2, the
formula looks very simple:

Δβ = arctan
(2L< + 3)η

(L< + 1)(L< + 2) + η2
. (12)

The widths contained in the correlation formula can be expressed more or less accurately [11]
as Γα = (�ω/π)SαP .

Thus, all values involved into the formula of the correlation are known except the spec-
troscopic factors Sα. The idea to calculate the alpha-particle spectroscopic factor of a neutron
resonance in a certain theoretical approach looks hopeless, because the components of the
wave function of any resonance are legion. Nevertheless, there is another way. For the most
part analyzing the penetrability P , one may believe that one of two amplitudes is dominating.
In that case, only the ratio of these two amplitudes is the value of interest. This value may be
in some cases a subject of an independent study. Using (n, αγ) reaction induced by the un-
polarized neutron beam, one can measure the eight-vector correlation, which may be roughly
denoted as (kα · kγ)4. This notation is not adequate enough because, being written explicitly
in the form of the product of eight Y functions of the rank 1, it includes the scalar products
of the kα- and kγ-dependent tensors of the ranks 0, 2, and 4, while only the last product is
the proper correlation by deˇnition. More precisely, this correlation can be expressed through
the components of irreducible tensors Y m

4 (ϑα, φα) and Y −m
4 (θγ , φγ) in the kinematic form:

4∑
m=−4

(4m4 − m|00)
4π

9
Re [Y m

4 (ϑα, φα)Y −m
4 (θγ , φγ)]. (13)

The dynamic form of this correlation is deˇned by formula (3). The special feature of it is
the ranks of the measured tensors: jα = jβ = 4 and j = 0. If the dominating amplitude is
related to the angular momentum L < 2, then the eight-vector correlation appears due to the
minor amplitude only and the ratio [Γ(L′

α)Γ(Lα)]1/2 determines the normalized (kα · kγ)4

correlation. Thus, this ratio turns out to be measurable.
If the ratio of the amplitudes is known, it is possible to calculate the coefˇcient of the

correlation (kα · [σ × kγ ])(kα · kγ) using the formalism presented above and after that to
measure the ROT-effect. A discrepancy between the experimental and calculated results,
if it took place, would be an evidence of the T-noninvariant effect. So, it is possible in
principle to estimate an upper limit of the actual T-noninvariant phase shift after the discussed
measurements and calculations.
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2. PERFORMED EXPERIMENT AND PROMISING EXAMPLES

The capabilities of experimental tools in the studies under discussion may be estimated
due to the experiment devoted to the measurement of TRI-correlation which has been carried
out yet [6]. The following reaction was used:

10B(n, αγ)6Li (Eγ = 478 keV).

The upper limit of the effect ∼ 0.5 · 10−4 was established. Unfortunately, it was testing
experiment. The matter is that the spin of the intermediate state of 6Li is 1/2; therefore, in
consequence of the selection rules j � 1 and thus not only the TRI- but also the ROT-effect is
precisely zero in this case. Experiments with other isotopes are signiˇcantly harder, because
the heavier the target nucleus, the lower the contribution of the (n, αγ) channel. So, the
problem of more or less suitable target isotope turns out to be a basic one. Continuous
searching for an optimal reaction allowed us to extract two promising examples.

Among the stable targets the reaction on Zn seems to be the best. The characteristics of
the reaction under study are the following:

67Zn(n, αγ)64Ni (Eγ = 1340 keV), I0 = 5/2−, I = 3−, J = 2+, F = 0+, Lα, L′
α = 1, 3.

The compound state spin I = 3− is chosen because the alpha decay of I = 2− resonances
is not observed in 68Zn. The abundance of the 67Zn isotope is 4.1%, the thermal neutron
cross section is σtherm = 6.9 b. Unfortunately, even in this case, the 	ux of the gamma
quanta produced by (n, γ) reaction on 67Zn and the admixtures of all other Zn isotopes is
about 105 times more intensive (σγ = 1.1 b for the natural Zn) than the gamma 	ux of the
reaction under study (σαγ = 160 μb [10]). Thus, a very fast gamma detector, such as BaF2,
is required for such measurements. The enriched target makes the situation slightly better.

An interesting example is the reaction on the radioactive target 41Ca (t1/2 = 1.03 · 105 y,
γ rays are not observed):

41Ca(n, αγ)38Ar (Eγ = 2167 keV), I0 = 7/2−, I, J = 2+, F = 0+, Lα, L′
α = 3, 5.

A number of the resonances are known in the 42Ca compound nucleus. Unfortunately,
the values of spins I are not determined for them. At ˇrst glance, the example looks more
promising because the ratio of the cross sections σαγ = 140 mb (σγ = 4 b) is large enough;
thus, the use of this target is free of the disadvantage mentioned above. However, such an
experiment requires: extremely powerful reactor-producer to create a sample of satisfactory
mass; isotope separation to obtain a signiˇcant resulting percentage of the isotope and to get
rid of the radioactive 45Ca admixture; a high-	ux beam of polarized neutrons to achieve a
satisfactory value of the counting rate on the small sample; and a well-developed technology of
the experimental work with the targets which are soft radioactive sources of high intensity. At
last, the value Lα(min) = 3 prevents the use of the above-presented method of measurement
of the minor alpha-width.

An example of the reaction (n, pγ) or (n, γα) suitable for the investigation of the
ROT-effect is not found. There is a broad spectrum of reactions (p, αγ) in the proton
resonance area (targets with the masses A ∼ 30) which can be analyzed in searching for
examples promising for the study of the ROT-effect. This analysis is however beyond the
scope of the present paper.
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CONCLUSIONS

In the present paper, the properties of the ˇve-vector correlation (kα · [σ × kγ ])(kα ·kγ)
in the reactions (n, αγ) (n, pγ), (n, γα), and (p, αγ) are analyzed in detail. The emphasis
is on the selection rules which must be fulˇlled to obtain the nonzero effect. Two examples
of reactions more or less promising for the observation of the correlation are proposed. The
method suitable to evaluate the value of the ROT-effect by the use of other experimental data
is proposed. The scheme that allows one, in principle, to search for the contribution of the
actual time-reversal noninvariant amplitude is proposed.

Summing up the discussions presented in the current and preceding papers, it is important
to stress the following essential points:

1. The ROT-effect is a natural property of (n, αγ), (n, pγ), (n, γα), and (p, αγ) reactions.
2. The ROT-effect may be manifested in both sequential and simultaneous processes.
3. In a sequential cascade, the interference of two amplitudes of the alpha or proton

transfer with different multipolarities is necessary for the existence of the ROT-effect.
4. The interference may appear due to the difference of phase shifts, which in turn

is originated by the Coulomb interaction. The interference of the amplitudes of different
resonances may also be the origin of the effect.

5. The effect seems to be accessible to observation in the (n, αγ) reaction.
6. If the basic effect is accurately taken into account, one may, in principle, search for the

contribution of the actual time-reversal noninvariant amplitude.
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