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Here we present two explicit counterexamples to the widely spread beliefs about an exclusive role
of bimodality as the ˇrst-order phase transition signal. On the basis of an exactly solvable statistical
model generalizing the statistical multifragmentation model of nuclei, we demonstrate that the bimodal
distributions can naturally appear both in inˇnite and in ˇnite systems without a phase transition. In the
ˇrst counterexample a bimodal distribution appears in an inˇnite system at the supercritical temperatures
due to the negative values of the surface tension coefˇcient. In the second counterexample we explicitly
demonstrate that a bimodal fragment distribution appears in a ˇnite volume analog of a gaseous phase.
In contrast to the statistical multifragmentation model, the developed statistical model corresponds to
the compressible nuclear liquid with the tricritical endpoint located at one third of the normal nuclear
density. The suggested parameterization of the liquid phase equation of state is consistent with the
L. Van Hove axioms of statistical mechanics and it does not lead to an appearance of the nonmonotonic
isotherms in the macroscopic mixed phase region which are typical for the classical models of the Van
der Waals type. Peculiarly, such a way to account for the nuclear liquid compressibility automatically
leads to an appearance of an additional state that in many respects resembles the physical antinuclear
matter.
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INTRODUCTION

During the last decade the studies of the nuclear liquidÄgas phase transition (PT) stimulated
both theoretical and experimental interest in the bimodal distributions [1Ä8]. Moreover,
some theoretical arguments [1Ä4], although obtained approximately, which relate the bimodal
distribution of a certain order parameter and the location of the YangÄLee zeros [9] in a
complex fugacity plane became so popular that nowadays the bimodality is considered as
a signal of the ˇrst-order PT in ˇnite systems, whereas the opposite opinions [10Ä12] are,
in fact, ignored. The scheme connecting the bimodality and the YangÄLee zeros [2, 4] is
so abstract and general that the authors failed even to discuss the physical origin of the
bimodal distribution. However, in our opinion this is a crucial point, since in the nuclear
physics experiments at intermediate energies one cannot get the purely statistical distributions
of any observable because the process of collision is a dynamical one and, hence, we cannot
account for or extract the dynamical 	uctuations of the initial conditions, the 	uctuations of
the number of participating nucleons, or possible instabilities occurring during the course of
the system expansion and/or freeze out. Moreover, it is not evident that the observed bimodal
distributions are not generated by the imposed experimental cuts.

The authors of this theoretical scheme [2Ä4] implicitly assumed that the measured distrib-
utions and the corresponding partition function of the dynamically evolving system produced
in the nuclear reaction generated by the recipe of [2Ä4] do, indeed, correspond to the equi-
librium partition function of the original physical system. This assumption, however, cannot
be justiˇed without having a complete dynamical model which correctly describes the whole
evolution of the system. Moreover, even if one is able to completely account for the whole
dynamical aspect of the system evolution and, thus, is able to extract the purely statistical
distributions, then there is no guaranty that the suggested theoretical scheme [2Ä4] will work
without any additional conditions. For example, it is absolutely unclear what one should do,
if the extracted statistical distributions do not correspond to the statistical ensemble of the
physical system under consideration? For the macroscopic systems we do not have such a
problem, since for the vast majority of systems all the statistical ensembles are equivalent and,
hence, one can easily change them and choose the appropriate one. This, however, is not the
case for ˇnite or even small systems which are studied in the nuclear physics experiments.

The second typical mistake of [1Ä4] and similar schemes [13,14] is that the authors of such
schemes identify each local maximum of the bimodal distribution with a pure phase. Even in
a famous textbook of T. Hill on thermodynamics of small systems [13], such an assumption
is a corner stone of his treatment of PTs in ˇnite systems. In contrast to the authors of
the scheme [2Ä4], Hill justiˇed his assumption on bimodality by stating that due to the fact
that an interface between two pure phases ®costs¯ some additional energy, the probability
of their coexisting in a ˇnite system is less than for each of pure phases. We, however,
should remind that the assumption on the pure phases existence in small system is taken
from the examples of inˇnite systems, whereas for ˇnite systems such an assumption cannot
be justiˇed. Moreover, the examples of the constrained statistical multifragmentation model
(CSMM) [15] and the gas of hadron bags model [12], which are exactly solved for ˇnite
systems and which allow one to rigorously deˇne analogs of phases for ˇnite grand canonical
systems, show that, in contrast to the assumptions of [1,2,4,13,14], in ˇnite systems the pure
liquid phase cannot exist at ˇnite pressures. Instead, it can appear only as a part of mixed
phase which is represented by even number of thermodynamically metastable states [12,15].
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Therefore, here we would like to give some counterexamples to the claims of [1, 2, 4, 13]
by considering the exact analytical solutions of the CSMM in the thermodynamic limit and
for the ˇnite volumes which lead to the bimodal fragment distributions inside of the crossover
region and inside of the gaseous phase. For this purpose we consider the CSMM with two
new elements. The ˇrst of them is a more realistic equation of state for the liquid phase
which, in contrast to the original SMM formulation [16Ä18], is a compressible one. The
second important element of the present model is a more realistic parameterization for the
temperature dependence of surface tension that is based on the exact analytical solution of the
partition function of surface deformations [19,20]. Besides, these two new elements allow us
to study a realistic phase diagram of the CSMM both for ˇnite systems and for inˇnite system.

The work is organized as follows. In Sec. 1, we describe the new parameterization of the
CSMM liquid phase pressure which repairs the two main pitfalls of the original SMM and
allows one to consider the compressible liquid which has the tricritical endpoint at the phase
diagram at the one third of the normal nuclear density. It is also shown that the bimodal
fragment size distributions may appear at the supercritical temperatures due to negative values
of the surface tension coefˇcient and without any PT. Section 2 is devoted to the analysis
of ˇnite systems using the exact solution of CSMM. In this section we demonstrate that the
bimodal fragment size distribution is generated within the ˇnite volume analog of the gaseous
phase. Our conclusions are formulated in the ˇnal section.

1. CSMM WITH COMPRESSIBLE NUCLEAR LIQUID
IN THERMODYNAMIC LIMIT

The general solution of the CSMM partition function formulated in the grand canonical
variables of volume V , temperature T and baryonic chemical potential μ is given by [12,15,
21,22]

Z(V, T, μ) =
∑
{λn}

eλn V

[
1 − ∂F(V, λn)

∂λn

]−1

, (1)

where the set of λn (n = 0, 1, 2, 3, . . .) are all the complex roots of the equation

λn = F(V, λn), (2)

ordered as Re (λn) > Re (λn+1) and Im (λ0) = 0. The function F(V, λ) is deˇned as

F(V, λ) =
(

mT

2π

)3/2

z1 exp
{

μ − λTb

T

}
+

K(V )∑
k=2

φk(T ) exp
{

(pl(T, μ) − λT )bk
T

}
. (3)

Here m � 940 MeV is a nucleon mass; z1 = 4 is an internal partition (the degeneracy factor)
of nucleons; b = 1/ρ0 is the eigen volume of one nucleon in a vacuum (ρ0 � 0.17 fm3 is the
normal nuclear density at T = 0 and zero pressure). The reduced distribution function of the
k-nucleon fragment in (3) is deˇned as

φk>1(T ) ≡
(

mT

2π

)3/2

k−τ exp
[
−σ(T ) kς

T

]
, (4)

where τ � 1.825 [18] is the Fisher topological exponent and σ(T ) is the T -dependent surface
tension coefˇcient. Usually, the constant, parameterizing the dimension of surface in terms
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of the volume, is ς = 2/3, but in this work we would like to give the results for a wide range
of its values, namely, for 0 < ς < 1.

In (3) the exponents exp (−λbk) (k = 1, 2, 3, . . .) appear due to the hard-core repul-
sion between the nuclear fragments [15, 17, 21], while pl(T, μ) is the pressure of the liquid
phase [21, 22]. As one can see from (3), the nucleons are treated differently compared to
larger fragments: they do not have the surface free energy and all the bulk free energy
characteristics except for the baryonic charge which are encoded in the liquid phase pres-
sure pl(T, μ) (see later). In principle, the fragments with the mass below ten nucleon masses
can be parameterized in a similar way [16,21], but for the sake of simplicity we treat in this
way the nucleons only. Such a treatment does not affect the properties of the phase diagram
in the thermodynamic limit, since exclusion of any ˇnite number of light fragments from the
sums in (3) does not affect the PT existence and its order [15,17,21].

Note also that the complex free energy density −TF(V, λ) [15] of the present model
contains neither the Coulomb energy nor the asymmetry energy. This assumption is similar
to [17,18,23] and allows us to study the nuclear matter properties in the thermodynamic limit.
However, in contrast to [17,18,23], the model free energy density −TF(V, λ) in (3) contains
the liquid phase pressure that can be chosen in a general form and the size of maximal
fragment K(V ) that can be a desired function of the system volume V . However, in this
section we consider the thermodynamic limit only; i.e., for V → ∞ it follows K(V ) → ∞.
Then the treatment of the model is essentially simpliˇed, since Eq. (2) can have only two kinds
of solutions [15,17,21], either the gaseous pole pg(T, μ) = Tλ0(T, μ) for F(V, λ0−0) < ∞ or
the liquid essential singularity pl(T, μ) = Tλ0(T, μ) for F(V, λ0−0) → ∞. The mathematical
reason why only the rightmost solution λ0(T, μ) = max {Re (λn)} of Eq. (2) deˇnes the
system pressure is evident from Eq. (1): in the limit V → ∞ all the solutions of (2) other
than the rightmost one are exponentially suppressed.

In the thermodynamic limit the model has a PT, when there occurs a change of the right-
most solution type, i.e., when the gaseous pole is changed by the liquid essential singularity
or vice versa. The PT line μ = μc(T ) is a solution of the equation of ®colliding singularities¯
pg(T, μ) = pl(T, μ) [15, 17, 21], which is just the Gibbs criterion of phase equilibrium. The
properties of a PT are deˇned only by the liquid phase pressure pl(T, μ) and by the temper-
ature dependence of surface tension σ(T ), since the value of Fisher exponent τ = 1.825 is
ˇxed by the values of the critical indices of ordinary liquids [18] and by the experimental
ˇndings [24,25].

In order to avoid the incompressibility of the nuclear liquid, we suggest to consider the
following simplest parameterization of its pressure:

pl =
W (T ) + μ + a2(μ − μ0)2 + a4(μ − μ0)4

b
. (5)

Note that the above way to account for the nuclear liquid compressibility is fully consis-
tent with the L. Van Hove axioms of statistical mechanics [26, 27] and, hence, it does not
lead to an appearance of the nonmonotonic isotherms in the mixed phase region which are
typical for the mean-ˇeld models. In [22] the liquid phase pressure was parameterized as a
second-order polynomial in the baryonic chemical potential. In our opinion, Eq. (5) is more
favorable, since it allows one to easily get a correct value for the nuclear incompressibility
factor for a normal nuclear liquid. In Eq. (5), W (T ) = W0 + T 2/W0 denotes the usual
temperature-dependent binding energy per nucleon [16, 17] with W0 = 16 MeV and the
constants μ0, a2 and a4 > 0. In principle, these constants should be ˇxed in the way to



836 Bugaev K. A. et al.

reproduce the properties of normal nuclear matter; i.e., at vanishing temperature T = 0 and
normal nuclear density ρ = ρ0 the liquid pressure must be zero:

W0 + μc(0) + a2(μc(0) − μ0)2 + a4(μc(0) − μ0)4 = 0, (6)

where μc(0) is the baryonic chemical potential at the PT line taken at T = 0. Finding the
particle density of the liquid as ρl = ∂pl/∂μ

ρl(μ) =
1 + 2a2μ̃ + 4a4μ̃

3

b
with μ̃ = μ − μ0, (7)

one can get the equation for μc(0); i.e., from ρl(μc(0)) = ρ0 it follows 2 a2μ̃(0)+
4 a4 μ̃(0)3 = 0, where the shifted chemical potential μ̃(0) is deˇned as μ̃(0) ≡ μc(0) − μ0.
Usually, an additional requirement to ˇx the nuclear liquid model parameters is related to the
incompressibility factor of the normal nuclear matter [28] which is deˇned as

K0 ≡ 9
(

∂pl

∂ρl

)
T=0

=
9(1 + 2a2μ̃(0) + 4a4μ̃(0)3)

2a2 + 12a4μ̃(0)2
. (8)

The present-day experimental estimates for the incompressibility factor are Kexp
0 =

(230 ± 30) MeV [29Ä32], but the models with the typical value K0 = 300−360 MeV
are also well known [28, 31]. For instance, the Skyrme force model SIII, which is able to
successfully describe the experimental properties of many nuclei [31], has the value of the
nuclear incompressibility factor K0 = 355 MeV. Therefore, instead of describing exactly the
present-day values of the normal nuclear incompressibility factor and having many additional
parameters, we prefer to keep the model as simple as possible, but to require that at the tri-
critical point the baryonic density is ρcep = ρ0/3 which is typical for the liquidÄgas PTs [33].
The latter generates the following equation for the shifted value of the baryonic chemical
potential at the tricritical endpoint: 2a2μ̃cep + 4a4μ̃

3
cep = −2/3, where μ̃cep ≡ μcep − μ0.

Choosing μ0 = −W0 = −16 MeV, we obtain μ̃(0) = 0 and, hence, the expressions (6)
and (7) are essentially simpliˇed, respectively, giving us ρl(μc(0)) ≡ ρ0 and K0 = 9/2a2.
Then, solving the phase equilibrium condition at the tricritical endpoint together with the
condition on the baryonic density at this point, one can express both the coefˇcient a4

and μ̃cep in terms of a2 and the pressure of gaseous phase pg(Tcep, μcep) taken at this point.
Thus, one can express K0, ρl(μc(Tcep)) and a4 in terms of a2 and pg(Tcep, μcep). However,
we found that for K0 < 350 MeV the obtained values of the coefˇcient a4 are negative, which
leads to an instability of nuclear liquid at very high baryonic densities. Therefore, in order to
avoid these problems, we ˇxed K0 = 365 MeV, which leads to a2 � 1.233 ·10−2 MeV−1 and
a4 � 4.099 ·10−7 MeV−3. Thus, the present model is able to repair the two major unrealistic
features of the original SMM; namely, it provides one with a reasonable value for the nuclear
liquid compressibility and with a physically motivated value for the baryonic density at the
tricritical endpoint.

In addition to the new parameterization of the free energy of the k-nucleon fragment (3),
we propose to consider a more general parameterization of the surface tension coefˇcient

σ(T ) = σ0

∣∣∣∣Tcep − T

Tcep

∣∣∣∣
ζ

sign (Tcep − T ), (9)

with ζ = const � 1, Tcep = 18 MeV and σ0 = 18 MeV like in the SMM [16]. In
contrast to the Fisher droplet model [34] and the usual SMM [16], the CSMM surface
tension (9) is negative above the critical temperature Tcep. It is necessary to stress that there
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is nothing wrong or unphysical with the negative values of surface tension coefˇcient (9),
since σ(T ) kς in (4) is the surface free energy of the fragment of mean volume bk and, hence,
as any free energy, it contains the energy part esurf and the entropy part ssurf multiplied by
temperature T [34]. Therefore, at low temperatures the energy part dominates and the surface
free energy is positive, whereas at high temperatures the number of fragment conˇgurations
with large surface drastically increases and it exceeds the Boltzmann suppression and, hence,
the surface free energy becomes negative since ssurf > esurf/T . Because of this reason
the negative values of the surface tension coefˇcient were recently employed in a variety of
exactly solvable statistical models for the deconˇnement PT [35Ä38]. For the ˇrst time this
fact was derived within the exactly solvable model for surface deformations of large physical
clusters [19]. Very recently an important relation between the surface tension of large quarkÄ
gluon bags and the string tension of two static color charges measured by the lattice QCD was
derived [39]. Based on such a relation, it was possible to conclude that at high temperatures
the surface tension coefˇcient of quarkÄgluon bags should be negative [39,40].

Furthermore, a thorough analysis of the temperature dependence of the surface tension
coefˇcient in ordinary liquids [41, 42] shows not only that the surface tension coefˇcient
approaches zero, but, in contrast to the widely spread beliefs, for many liquids the full T
derivative of σ(T ) does not vanish and remains ˇnite at Tcep: dσ(T )/dT < 0 [41]. Therefore,
just the naive extension of these data to the temperatures above Tcep would lead to negative
values of surface tension coefˇcient at the supercritical temperatures. On the other hand, if
one, as usual, believes that σ ≡ 0 for T > Tcep, then it is absolutely unclear what physical
process can lead to simultaneous existence of the discontinuity of dσ/dT at Tcep and the
smooth behavior of the pressure's ˇrst and second derivatives at the crossover. Finally,
the negative values of the surface tension at supercritical temperatures is the only known
physical reason which prevents the condensation of smaller droplets into a liquid phase and,
thus, it terminates the ˇrst-order PT existence and degenerates it into a crossover at these
temperatures. Therefore, we conclude that negative values of the surface tension coefˇcient
at supercritical temperatures are also necessary for ordinary liquids, although up to now this
question has not been investigated.

Similarly to the simpliˇed SMM [17,18], for T < Tcep the present model has the nuclear
liquidÄgas PT of the ˇrst order. However, as one can see from Fig. 1, in this region of
temperatures the model has two ˇrst-order PTs. The meaning of the second PT curve can be
understood from Fig. 2. At ˇrst glance a mathematical cause of an ®antimatter¯ appearance
may look surprising since the gas pressure contains no fragments with negative baryonic
charges. However, this is true for |μ̃/T | � 1 only, while for |μ̃/T | � 1 the main contribution
in the liquid phase pressure pl in (5) is deˇned by the term a4μ̃

4 and, hence, its derivative
with respect to μ determines a sign of the baryonic charge density of both a liquid phase and
a gas of nuclear fragments. The latter can be seen from the charge density expression for the
gaseous phase. Indeed, ˇnding the μ derivative of the gaseous phase pressure pg = Tλ0(T, μ)
from Eqs. (2) and (3), one ˇnds the baryonic charge density of the gaseous phase as

ρg =

ρ0

(
mT

2π

)3/2

z1 exp
{

μ − λTb

T

}
+ ρl

∞∑
k=2

φk(T )k exp
{

(pl − pg)bk
T

}

1 +
(

mT

2π

)3/2

z1 exp
{

μ − λTb

T

}
+

∞∑
k=2

φk(T )k exp
{

(pl − pg)bk
T

} . (10)
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Fig. 1. The phase diagram in T − μ plane. The ˇrst-order PT occurs along the solid curves. Above

the upper curve there exists the nuclear matter, while below the lower one there is an analog of the

antinuclear matter. The vertical dashed lines show the second-order PT and the black circles correspond
to the tricritical endpoints marked by the digits 1 (nuclear matter) and 2 (antinuclear matter). A cross-

over occurs along the dotted vertical line of the vanishing surface tension coefˇcient

Fig. 2. The phase diagram in ρ − p plane. The grey areas show the mixed phases of the ˇrst-order
PTs. The isotherms are shown for T = 11, 16, 17, 18 MeV from bottom to top. Negative density values

correspond to an ®antimatter¯. For the densities |ρ/ρ0| � 1/3 at the isotherm T = 18 MeV there

exists the second-order PT. The tricritical endpoints are marked by the digits 1 (nuclear matter) and 2
(antinuclear matter)

From this expression one can see that, if the contribution of the nucleons (proportional to z1)
is small compared to the sum over other nuclear fragments, i.e., for (μ − b pl(T, μ)) /T < −1,
then the baryonic charge density of the gaseous phase is proportional to that one of liquid,
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i.e., sign [ρg] = sign [ρl]. Of course, one should not take this additional solution as a
physical antinuclear matter, since the gas pressure of the present model contains only the
nuclear fragments with the charges k = 1, 2, 3, . . . that stay in front of the nonrelativistic
value of the baryonic chemical potential μ and does not contain any terms with an opposite
value of μ. It is clear that in a relativistic treatment one would have the symmetry with
respect to the charge conjugation μrel ↔ −μrel for the relativistic baryonic chemical potential
μrel ≡ m + μ. Nevertheless, it is a remarkable fact that the simplest way to account for the
nuclear liquid compressibility which is consistent with the L. Van Hove axioms of statistical
mechanics [26, 27] automatically leads to an appearance of an additional state that in many
respects resembles the physical antinuclear matter.

Also Eq. (10) clearly shows that at the phase equilibrium, i.e., for the same pressure, the
baryonic densities of gaseous and liquid phases differ, if the sum staying both in the numerator
and in the denominator of (10) is not divergent. This is possible, either for positive values
of the surface tension coefˇcient σ(T ) > 0 and any positive value τ > 0 or, alternatively,
for σ(T ) = 0 and τ > 2. In either of these two cases there is a ˇrst-order PT. If, however,
σ(T ) = 0 and τ � 2, which is the case for the present model at T = Tcep, then for some
values of the chemical potential one has ρg(Tcep, μcep) = ρl(Tcep, μcep) and the sums in (10)
diverge. Then at these points there exists a PT of higher order. The analysis of higher-order
derivatives of gaseous pressure made similarly to [35] shows that for 2 � τ > 3/2 at the
critical endpoint of this model there exists a second-order PT. In the present model a second-
order PT exists not only at the critical endpoints, but also at the two lines in the T − μ plane
along which the surface tension is zero (see the two vertical dashed lines in Fig. 1). Therefore,
the both critical endpoints of the present model are the tricritical endpoints. This feature is
similar to the simpliˇed SMM [17, 18] and it is robust for τ = 1.825, whereas, as one can
see from Fig. 2, the second-order PTs of this model are not located at the constant density as
in the simpliˇed SMM. Finally, for the supercritical temperatures the surface tension (9) is
negative and, hence, the phase equilibrium is not possible in this case [17,18,21].

Fig. 3. Fragment size distribution in the gaseous phase is shown for a ˇxed temperature T = 13 MeV

and two values of the baryonic chemical potential μ. The number of nucleons in a fragment is k. The
larger value of μ corresponds to the gaseous state at the phase boundary with the mixed phase. The

calculations were made for the largest fragment of K(V ) = kM = 7000 nucleons
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Now we would like to study the fragment size distribution in two regions of the phase
diagram in order to elucidate the role of the negative surface tension coefˇcient. In order
to demonstrate the pitfalls of the bimodal concept of [1Ä4, 13], we study only the gaseous
phase and the supercritical temperature region, where there is no PT by construction. As
one can see from Fig. 3, in the gaseous phase, even at the boundary with the mixed phase,
the size distribution is a monotonically decreasing function of the number of nucleons in a
fragment k. The found distributions are very similar to those shown in Fig. 5 of [43] for
comparable temperatures. As one can see from Fig. 3, for small fragments the distribution
is almost power-like one (notice the double logarithmic scale in Fig. 3), while for larger
fragments the deviation from a pure power law is seen. No bimodal distribution is found in
this case, although in actual simulations we used K(V ) = kM = 7000 nucleons.

However, for the supercritical temperatures one ˇnds the typical bimodal fragment distrib-
ution for a variety of temperatures and chemical potentials, as one can see from Figs. 4 and 5.
It is necessary to stress that by construction in this region the phase equilibrium is impossible
due to negative surface tension coefˇcient, but the fragment distribution is bimodal and it
very closely resembles the weighted fragment size distributions found for the lattice gas model
in [4] shown there in Fig. 5 and considered by the author of [4] as a clear PT signal in a ˇnite
system. The bimodal distributions of the present model consist of three elements: there is a
sharp peak at low k values, then at intermediate fragment sizes there exists a local minimum,
while at large fragment sizes there is a wide maximum. A sharp peak re	ects a fast increase
of the probability density of dimers compared to the monomers (nucleons), since the latter do
not have the binding free energy and the surface free energy and, hence, the monomers are
signiˇcantly suppressed in this region of thermodynamic parameters. On the other hand, it is
clear that the tail of fragment distributions in Figs. 4 and 5 decreases due to the dominance
of the bulk free energy and, hence, the whole structure at intermediate fragment sizes is due
to a competition between the surface free energy and two other contributions to the fragment
free energy, i.e., the bulk one and the Fisher one.

Fig. 4. Fragment size distribution in the gaseous phase is shown for a ˇxed baryonic chemical potential

μ = −27.5 MeV and three values of the temperature T . The legend is similar to that of Fig. 3. The
dotted curve in this ˇgure corresponds to the solid curve in Fig. 3
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Fig. 5. Fragment size distribution in the gaseous phase is shown for a ˇxed temperature T = 20 MeV
and several values of the baryonic chemical potential μ. The legend is similar to that of Fig. 3. The

principal difference from the distributions shown in Fig. 3 is the presence of negative surface tension

coefˇcient. Note that the shown fragment size distributions demonstrate a nonmonotonic dependence
on the baryonic chemical potential

Let us demonstrate now that the bimodal fragment size attenuation appears due to the
negative value of the surface tension coefˇcient, i.e., for σ(T ) < 0. In the latter case the
gaseous pressure exceeds that one of the liquid phase; i.e., the effective chemical potential
ν ≡ (pl(T, μ) − pg(T, μ)) b < 0 is negative [17, 21]. Then the unnormalized distribution of
nuclear fragments with respect to the number of nucleons k

ω(k) = exp
[
−|ν|

T
k +

|σ|
T

kς − τ ln k

]
(11)

has the local minimum at some value kmin and the local maximum at kmax > kmin. This
can be shown by inspecting the logarithmic derivative of ω(k) with respect to k. Thus, the
extremum condition for such a derivative gives us

∂ ln ω(k)
∂k

∣∣∣∣
k=kE

= −|ν|
T

+
|σ|
T

ς

k1−ς
E

− τ

kE
= 0 ⇒ kE =

[
ς|σ|

|ν| + τT
kE

]1/(1−ς)

, (12)

where the extremum is reached for k = kE . Let us show now that the expression for kE

in (12) has two positive solutions. In the ˇrst case we assume that the Fisher term dominates
over the bulk one, i.e., |ν| � τ/kE , which may occur only for small values of kE . Then
neglecting the term |ν| in the above expression for kE one ˇnds

kmin = kE �
[

τT

ς|σ|

]1/ς

. (13)

The analysis of the second derivative of ln ω(k) with respect to k

∂2 ln ω(k)
∂k2

∣∣∣∣
k=kmin

= −ς(1 − ς)
|σ|

Tk2−ς
min

+
τ

k2
min

=
ςτ

k2
min

> 0 (14)



842 Bugaev K. A. et al.

shows that this derivative is always positive; i.e., there is a local minimum for ς > 0. Note

that Eq. (13) allows one to roughly estimate the surface tension as σ � − τT

ςkς
min

, if the position

of the local minimum is known (for an exact expression, see below).
In the opposite case, if the bulk free energy dominates over the Fisher term, i.e., for

|ν| 	 τT/kE , which occurs only for large values of kE , the solution for kE takes the form

kmax = kE �
[
ς|σ|
|ν|

]1/(1−ς)

, (15)

and, therefore, the second derivative of ln ω(k) with respect to k can be written as

∂2 ln ω(k)
∂k2

∣∣∣∣
k=kmax

=
τ

k2
max

− ς(1 − ς)|σ|
Tk2−ς

max

= − 1
kmax

[
(1 − ς)|ν|

T
− τ

kmax

]
. (16)

Now it is clear that the second derivative (16) is negative for |ν|(1 − ς) > τT/kmax. Note
that the latter inequality cannot be fulˇlled for (1− ς) � 1 only, whereas for the typical SMM
value ς � 2/3 the inequality |ν|(1 − ς) > τT/kmax is obeyed due to adopted assumption
|ν| 	 τT/kmax. Thus, at k � kmax the fragment distribution (11) has a local maximum. The
existence of the distribution with the saddle-like shape that has both a local minimum and a
local maximum is clearly seen in Figs. 4 and 5.

In fact, if the positions of both local extrema are known, i.e., kmin and kmax are known,
for instance, from the experiment, then for a given temperature T one can exactly ˇnd both ν
and σ. To demonstrate this, we introduce a new variable x

kς
E ≡ τT

ς|σ| (1 + x). (17)

Then, in terms of this variable the extremum condition (12) can be written as

τT

|ν| x =
[

τT

ς|σ| (1 + x)
]1/ς

, (18)

since kE ≡ (τT/|ν|)x. Denoting the solutions of Eq. (18) as x1 = (|ν|/τT )kmin and
x2 = (|ν|/τT )kmax ≡ Rx1 and dividing expression (18) for x = x2 by the same expression
for x = x1, one obtains the following equation for x = x1:

R =
[
1 + Rx1

1 + x1

]1/ς

⇒ x1 =
Rς − 1
R − Rς

, x2 = R
Rς − 1
R − Rς

, (19)

if the ratio R ≡ x2/x1 ≡ kmax/kmin is known from the fragment distribution. The above
results allow us to explicitly ˇnd the effective chemical potential ν and the surface tension
coefˇcient σ as

|ν| =
τT

kmin

Rς − 1
R − Rς

, |σ| =
τT

ςkς
min

[
1 +

|ν|
τT

kmin

]
=

τT

ςkς
min

R − 1
R − Rς

. (20)

These expressions can be useful for the experimental data analysis.
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From the above analysis it is evident that the bimodal distributions demonstrated in Figs. 4
and 5 have nothing to do with the PT existence, but appear due to the competition of the
negative surface free energy with the positive free energy terms generated by the Fisher
topological exponent and the bulk term, which, respectively, dominate at small and large
values of fragment size. Thus, we give an explicit counterexample to the widely spread
belief [1Ä4,13] that a bimodal distribution of typical order parameter (size of fragment) is an
exclusive signal of a ˇrst-order PT in ˇnite systems. Together with the authors of [10Ä12],
we would like to stress that, without studying the nature of the bimodal distributions, one
cannot claim that a PT is its only origin.

Furthermore, the existence of bimodal distributions without a PT completely breaks down
the logic of T.Hill [13]. According to [13], the interface energy between two phases should
essentially suppress the coexistence of two ®pure¯ phases, but the states at supercritical
temperatures are, indeed, kind of the coexistence of two phases, but in the absence of a PT
and, hence, without an explicit surface separating them.

2. BIMODAL DISTRIBUTIONS AT FINITE VOLUMES

In this section we would like to thoroughly analyze the second typical mistake of the
approaches [2Ä4, 13, 14] based on bimodality properties of a ˇrst-order PT in ˇnite systems.
In these approaches, it is implicitly assumed that, like in inˇnite systems, in ˇnite systems
there exist exactly two ®pure¯ phases and they correspond to two peaks in the bimodal
distribution of the order parameter. The examples given in the preceding section correspond
to the thermodynamic limit, although in actual simulations we used 7 · 103 and 104 particles.
We found that further increase of the size of the largest fragment K(V ) in (3) generates the
relative numerical errors below 10−8 compared to the results obtained in the thermodynamic
limit. In this section, however, we consider smaller systems whose behavior is far from the
thermodynamic limit.

In order to illustrate some of the results which are necessary for a discussion of bimodality
in ˇnite systems, we introduce the real Rn and imaginary In parts of λn = Rn + iIn and
consider Eq. (2) as a system of coupled transcendental equations

Rn =
K(V )∑
k=1

φk(T ) exp
[
Re (νn) k

T

]
cos (Inbk), (21)

In = −
K(V )∑
k=1

φk(T ) exp
[
Re (νn) k

T

]
sin (Inbk), (22)

where for convenience we introduced the following set of the effective chemical potentials νn:

νn ≡ ν(λn) = pl(T, μ)b − (Rn + iIn) bT, (23)

and denoted φ1(T ) = (mT/2π)3/2z1 exp [(μ − pl(T, μ)b)/T ] as the reduced distribution for
nucleons.

Consider the real root (R0 > 0, I0 = 0), ˇrst. Similarly to the SMM [17], for In = I0 = 0
the real root R0 of the CSMM exists for any T and μ. Comparison of R0 from (21) with



844 Bugaev K. A. et al.

the expression for vapor pressure of the analytical SMM solution [17] indicates that TR0

is a constrained grand canonical pressure of the mixture of ideal gases with the chemical
potential ν0. Let us show that the gas singularity is always the rightmost one. First, we
assume that for the same set of T, μ and V there exists a complex root Rn>0 which is
the rightmost one compared to R0, i.e., Rn>0 > R0 for In>0 
= 0. Then one immediately
concludes that Re (νn>0) < Re (ν0), but in this case for n > 0 one obtains

Rn =
K(V )∑
k=1

φk(T ) exp
[
Re (νn) k

T

]
cos (Inbk) <

K(V )∑
k=1

φk(T ) exp
[
Re(ν0) k

T

]
= R0, (24)

i.e., we arrive at a contradiction with the original assumption.
Note, however, that assuming an opposite inequality Rn>0 < R0 for In>0 
= 0 and I0 = 0,

one cannot get a contradiction, since a counterpart of the inequality (24) cannot be established
for Re (νn>0) > Re (ν0) due to the fact that for In>0 
= 0 some of the k-values in the sum
in Eq. (22) would generate unavoidably the inequality cos (Inbk) < 1. This means that the
gas singularity is always the rightmost one. Such a fact plays a decisive role in formulating
the ˇnite volume analogs of phases [15] and it will be exploited below as well.

Since Eq. (22) is not changed under the substitution In ↔ −In, the complex roots of the
system (21), (22) are coming in pairs only. This is an evident consequence of the fact that
the grand canonical partition (1) must be real. Now it is also apparent that all the roots can
be classiˇed according to a descending order of their real parts.

A rigorous mathematical scheme to identify the analogs of phases in ˇnite systems for
the partitions (1)Ä(4) was worked out in [12, 15, 21]. It is based on the number of roots of
the system (21), (22) for a given set of grand canonical variables T, μ and V . Thus, a single
real solution λ0 = R0 with I0 = 0 of the system (21), (22) corresponds to a gaseous phase,
since its pressure, indeed, looks like a pressure of a mixture of ideal gases with a single value
of the effective baryonic chemical potential ν0 deˇned by (23). If the system (21), (22) has
one real solution λ0 and any natural number n = 1, 2, 3, . . . of complex conjugate pairs of
roots λn�1, then the corresponding partition (1) describes a mixture of a gaseous phase with
a set of metastable states which are not in a true chemical equilibrium with the gas, since
the real parts of their free energy −TV Rn>0 are larger than the corresponding value for
the gaseous phase, i.e., −TV Rn>0 > −TV R0. The absence of a true chemical equilibrium
between these metastable states and the gas is also seen from the fact that the real parts
of their effective chemical potential νn are larger than the value of the effective chemical
potential of the gaseous phase ν0, i.e., Re (νn>0) > ν0. A ˇnite system analog of a 	uid
phase corresponds to an inˇnite number of the complex roots of the system (21), (22), but it
exists at inˇnite pressure only.

Using this scheme, one can build up the ˇnite system analog of the T −μ phase diagram.
Indeed, the curve Re (ν1(T )) divides the temperature-chemical potential plane into three
regions: for the region Re (νn) < Re (ν1(T )) there is only a single solution of the system (21),
(22) which describes the gaseous phase, at the curve Re (νn) = Re (ν1(T )) there are exactly
three roots of the system (21), (22), while for Re (νn) > Re(ν1(T )) there are ˇve or more
roots of this system, which corresponds to a ˇnite volume analog of mixed phase. Figure 6
shows such a curve Re (ν1(T )). The principal difference with the thermodynamic limit
discussed in the preceding section is that for ˇnite volumes the effective chemical potential in
the gaseous phase can be positive; i.e., for some temperatures one has ν0 > 0. Knowing the
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Fig. 6. The ˇnite volume analog of the phase diagram in T − Re (ν1) plane for given values of
K(V ) = 20 (dashed curve) and K(V ) = 100 (solid curve). Below each of these phase boundaries

there exists a gaseous phase only, but at and above each curve there are three or more solutions of the

system (21), (22). These solutions describe the states that can be identiˇed as a ˇnite volume analog of
a mixed phase. The additional curves correspond to the approximation (29)

Fig. 7. The image of the ˇnite volume analog of the phase diagram T − Re (ν1) of Fig. 6 is shown

in terms of the usual variables T and μ. Note that for ˇnite K(V ) the solutions μ1(T ) do not exist
for some temperatures max(T ) > Tcep and, thus, the both phase equilibrium curves of Fig. 1 form a

continuous phase diagram for a ˇnite system

values of Re (ν1(T )) and R1(T ), one can ˇnd the corresponding value of the liquid pressure,
which, in its turn, allows one to determine the curve μ1(T ) from the liquid phase equation
of state (5). Such curves μ1(T ) are shown in Fig. 7 for two values of the maximal fragment
size K(V ). Comparing the T − μ phase diagrams of Fig. 7 with those shown in Fig. 1, one
can see that for temperatures below Tcep all the curves are quantitatively similar to each other
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even for a small system with K(V ) = 20. However, in contrast to the thermodynamic limit
phase diagram of Fig. 1, for considered ˇnite systems the curves μ1(T ) for the nuclear matter
and ®antinuclear¯ matter are connected with each other at temperatures about Tcep.

It is necessary to stress that, in contrast to the inˇnite systems, the partial pressures TRn

of the states n = 0, 1, 2, 3, . . . that belong to the same grand canonical partition of a ˇnite
system (1) do not coincide with each other and, therefore, in contrast to the beliefs of the
authors of [2Ä4, 13], the statistical weights of the gaseous phase (n = 0) and the states with
n � 1 can be quite different. Moreover, although the state with n = 0 is a gaseous phase,
the states with n � 1 cannot be identiˇed as a ®pure¯ liquid, since they have different partial
pressures and different decay/formation times deˇned via the imaginary part of the free energy
as τn ≡ [InbT ]−1 [12, 15, 21]. Furthermore, in ˇnite systems even the gaseous phase differs
from that one existing in the thermodynamic limit, since, as one can see from Fig. 6, for
ˇnite volumes V the effective chemical potential can be positive, i.e., ν0 > 0, and this case
corresponds to entirely different distribution of fragments.

Fig. 8. Typical fragment size distributions existing in a ˇnite analog of gaseous phase are shown for a

ˇxed temperature T = 13 MeV and different value of the effective chemical potential ν0. For positive
values of ν0 the fragment distribution has a bimodal-like shape, although it is still a gas of all fragments.

The maximal size of nuclear fragment is K(V ) = kM = 100 nucleons

Indeed, as one can see from Fig. 8, for positive values of the effective chemical potential ν0

the fragment size distributions in a ˇnite analog of gaseous phase acquire a bimodal-like shape
without any PT. Existence of such distributions is another explicit counterexample against
Hill's belief [13] that the bimodal distributions can be used to unambiguously characterize a
PT in ˇnite systems.

Since an existence of the states with ν0 > 0 is of principal importance for this study, here
we would like to demonstrate this fact analytically. For this purpose, we consider the limit
Re (νn) 	 T for all 0 < n < N with N 	 1. For instance, this is a typical situation for low
temperatures T or it can appear at high baryonic densities existing inside a mixed phase. It
is clear that in this limit the leading contribution to the right-hand side of (22) corresponds
to the harmonic with k = K(V ), and, consequently, an exponentially large amplitude of this
term can be only compensated by a vanishing value of sin (InbK(V )), i.e., InbK = πn + δn
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with |δn| � π (hereafter we will analyze only the branch In > 0). Keeping the leading term
on the right-hand side of (22) and solving for δn, one ˇnds [15,21,22]

In ≈ 2πn + δn

K(V ) b
≈ 2πn

K(V )b

[
1 − 1

K(V ) bRn

]
, (25)

δn ≈ − 2πn

K(V ) bRn
, (26)

Rn ≈ φK(T ) exp
[
Re (νn)K(V )

T

]
, (27)

where the results are given for the branch of positive Rn values.
Since for large volumes V the negative values of Rn cannot contribute to the grand

canonical partition (1), here we analyze only values of n which generate Rn > 0. In this
case, substituting the reduced distribution (9) into Eq. (27), one obtains the leading terms for
the partial pressure of nth state

TRn ≈ pl(T, μ) − T

bK(V )
ln

∣∣∣∣ Rn

φK(T )

∣∣∣∣ ≈ pl(T, μ) − σ(T )
b[K(V )]1−ς

−

− T

[
ln |(2π/mT )3/2Rn| + τ ln K(V )

bK(V )

]
, (28)

under the inequalities Re (ν) 	 T and K(V ) 	 1. This equation clearly shows that for
K(V ) 	 1 and ς = 2/3 the nth state corresponds to a ˇnite droplet of a radius of K(V )1/3

nucleon radii having a volume pressure of an inˇnite liquid droplet which is corrected by the
Laplace surface pressure (the second term on the right-hand side of (28)). In fact, such states
correspond to a mixed phase dominated by a heaviest fragment. This is clearly seen from
(28) at low temperatures. Indeed, for T → 0 the left-hand side of (28) and the last term on
the right-hand side of it vanish and we obtain that equations for all Rn>0 degenerate into the

same expression pl(0, μ1)−
σ(0)

b[K(V )]1−ς
≈ 0, which is a condition of vanishing total pressure

of the ˇnite liquid drop, where the chemical potential μ1 corresponds to R1. In other words,
the vanishing total pressure of the nth state is the mechanical stability condition of mixed
phase, since at T → 0 the gaseous phase pressure is zero. A few examples of μ1(T ) are
depicted in Fig. 7.

Also Eq. (28) obviously demonstrates that in the thermodynamic limit K(V ) → ∞ an
inˇnite number of metastable states with partial pressures TRn>0 → pl(T, μ) go to the real
axis of the complex λ-plane, since in this limit In>0 → 0 in (25), and, hence, they form a
pole of inˇnite order at λn>0 = pl(T, μ)/T ; i.e., they form an essential singularity of the
isobaric partition function [12, 15, 21, 22] which, in contrast to a simple pole of a gaseous
phase λ0 = R0, describes a liquid phase.

From Eq. (28) one can get the effective chemical potentials Re (νn>0) of these n-states as

Re (νn>0) ≈
σ(T )

[K(V )]1−ς
+ T

[
ln |(2π/mT )3/2Rn>0| + τ ln K(V )

K(V )

]
, (29)

from which one can immediately deduce that for low temperatures and for K(V ) 	 1 the real
part of νn>0 is solely deˇned by the sign of the surface tension coefˇcient; i.e., from σ(T ) > 0
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it follows that Re (νn>0) > 0. In the thermodynamic limit K(V ) → ∞ Eq. (29) recovers the
usual SMM result that the effective chemical potential vanishes only at the phase equilibrium
line [17].

Furthermore, in the limit T → 0 from (29) one ˇnds that

Re (ν1) ≈ Re (ν2) ≈ Re (ν3) ≈ . . . ≈ Re (νn) ≈ bpl(0, μ1) ≈
σ(0)

[K(V )]1−ς
; (30)

i.e., the real parts of all effective chemical potential states are tending to match at vanishing
temperatures independently of the values of Rn>0 for μ = μ1 introduced earlier. From (30)
one can easily show that for ν0 < Re (ν1) the liquid droplet cannot exist in the limit T → 0.
Suppose, on the contrary, that this is possible. Then such a situation can occur only for
some chemical potential μ′ deˇned as ν0 = bpl(0, μ′). Obviously μ′ < μ1, since for the
equation of state of liquid (5) its pressure pl(0, μ) is a monotonically increasing function
of chemical potential μ. However, as we showed above, the total pressure of such a ˇnite

droplet is pl(0, μ′) − σ(0)
b[K(V )]1−ς

< 0 and, hence, such a droplet is mechanically unstable

and it cannot exist under such conditions. On the other hand, for μ′ > μ1 or, equivalently,
for ν0 = bpl(0, μ′) > Re (νn>0) ≈ bpl(0, μ1) the solution R0 always exists, which means
that the ˇnite volume analog of the gaseous phase exists together with the solutions Rn>0

describing the ˇnite droplet. These are simple physical arguments that Re (ν1(T )) is a ˇnite
volume analog of the T − μ diagram of the ˇrst-order PT at T → 0. More formal arguments
can be found in [12,15,21].

As one can see from Fig. 6, the expression (29) approximately reproduces the numerical
solution of the system (21), (22) for Re (ν1). Moreover, this ˇgure clearly demonstrates that
at low temperatures the condition Re (ν1) 	 T is obeyed and, hence, the approximation (29)
works well even for a small system with K(V ) = 20. For a larger system with K(V ) = 100,
Eq. (29) correctly reproduces the temperature dependence of Re (ν1(T )) for all temperatures
below 12 MeV, although in this case the inequality Re (ν1(T )) 	 T is not obeyed.

Also the above analysis demonstrates that the ˇnite volume analog of the tricritical point
with the parameters Re (ν) = 0 and σ(T ) = 0, i.e., a state at which the gaseous phase
pressure coincides with the pressure of inˇnite liquid droplet and the surface free energy is
zero, belongs to a ˇnite volume analog of a gaseous phase, since according to the above
analysis such equalities for ˇnite systems can be achieved only at T = Tcep and only for
ν0 = Re (ν0) = 0. Note that at the ˇnite volume analog of the tricritical point the size
distribution of the fragments is purely power-like. It is hoped that such a feature can be
helpful for an experimental identiˇcation of the tricritical point in the experiments.

An existence of the gaseous phase with ν0 > 0 in ˇnite systems clearly indicates the
principal difference between the properties of gaseous phases existing in ˇnite and in inˇnite
volumes. And this principal difference can be seen in the fragment distributions shown
in Figs. 3 and 8. Indeed, the fragment size distributions depicted in Fig. 3 are monotonically
decreasing ones, even taken at the boundary between the macroscopic gaseous phase and
macroscopic mixed phase, whereas for ν0 > 0 the fragment size distributions of Fig. 8
have a bimodal shape. The latter might not look as a canonical bimodal shape, but if one
accounts for the 	uctuation of the maximal number of nucleons in the system which is
similar to the number of participating nucleons in the nuclear reaction, then the resulting
distribution may look much more similar to those discussed in [3Ä5]. In Fig. 9 we show
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Fig. 9. The reweighted fragment size distribution for a ˇnite analog of gaseous phase. The original

fragment size distribution corresponds to the parameters T = 13 MeV and ν0 = 1.7 MeV (see the

corresponding curve in Fig. 8), but for K(V ) ∈ [85; 115] values distributed normally with the mean
value K̄(V ) = 100 and a dispersion 5

such a reweighted distribution which was constructed from ˇfteen distributions having the
same values of T = 13 MeV and ν0 = 1.7 MeV, but for the parameter K(V ) distributed
normally in the range K(V ) ∈ [85; 115] with the mean value K̄(V ) = 100 and a dispersion 5.
Such a reweighting models the possible dynamical 	uctuations of the impact parameter in
the nuclear reaction. The example of Fig. 9 demonstrates that the observed fragment size
distribution does differ from the original statistical fragment size distribution due to weak
dynamical 	uctuations of the impact parameter. The effect of the dynamical 	uctuations of
the initial temperature (which appears at the moment of thermal equilibrium) that is well-
known in the high-energy hadron and nuclear collisions [44] can be even more dramatic and
it can essentially modify the original statistical fragment size distribution. The worst is that
it is entirely unclear how this cause or/and the other possible physical ones like a collective
	ow and its instabilities modify the original statistical fragment size distribution before it
is measured by a detector. Therefore, from this example and the counterexamples given
above, we conclude that it is hard to believe that the theoretical schemes suggested in [1Ä4]
to manipulate with the observed data are, indeed, able to elucidate any essential PT related
characteristics of the statistical distributions from the measured data.

CONCLUSIONS

In the present work we gave two explicit counterexamples to the widely spread
beliefs [1, 2, 4, 5, 13] about an exclusive role of bimodality as the ˇrst-order PT signal and
showed that the bimodal distributions can naturally appear both in inˇnite and in ˇnite systems
without a PT. In the ˇrst counterexample, a bimodal distribution is generated at the supercrit-
ical temperatures by the negative values of the surface tension coefˇcient. This result is in
line with the previously discussed role of the competition between the volume and the surface
parts of the system free energy [10,12]. In the second considered counterexample, a bimodal
fragment distribution is generated by positive values of the effective chemical potential in
a ˇnite volume analog of a gaseous phase. The latter was provided by an exact analytical
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solution of the CSMM for ˇnite systems [12, 15] which was successfully generalized here
for more realistic equations of state of the compressible nuclear liquid and for more realistic
treatment of the surface tension free energy.

Also here we gave analytic results showing for the ˇrst time that for ˇnite, but large
systems, the value of the effective chemical potential on the ˇnite volume analog of the T −ν
phase diagram [12,15] is solely deˇned by the surface tension coefˇcient and by the radius of
the largest fragment. The derived analytical formulas for partial pressures of the metastable
states belonging to the same grand canonical partition give an explicit example that, on the
contrary to the beliefs of [1Ä4, 13], in ˇnite systems there are no two ®pure¯ phases as it is
the case in the thermodynamic limit. At ˇnite pressures the liquid-like ˇnite droplet appears
only as a part of a ˇnite volume analog of a mixed phase. Additionally, here we demonstrated
that for positive values of the effective chemical potential ν0 the properties of the gaseous
phase in ˇnite systems drastically differ from its properties in the thermodynamic limit. The
bimodal fragment size distributions depicted in Figs. 8 and 9 cannot exist in the gaseous phase
treated in the thermodynamic limit (see Fig. 3 for comparison).

The above results are in line with the critique [10Ä12] of a bimodality as a reliable signal
of the PT existence in ˇnite systems. Once more we have to stress that, without studying
the nature of the bimodal distributions, one cannot claim that a PT is its only origin. An
interesting result on the bimodality absence in the systems indicating a possible PT existence
in multifragment production in heavy-ion nuclear collisions was reported in [45]. This is an
additional counterexample to the widely spread belief on an exclusive role of bimodality as a
PT signal in ˇnite systems.

Therefore, all the counterexamples obtained in this work on the basis of an exactly solvable
statistical model known as the CSMM allow us to conclude that it is rather doubtful that the
theoretical schemes invented in [1Ä4] to manipulate with the observed data are, indeed, able
to elucidate the reliable PT signals from the measured data.
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