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QUANTUM-MECHANICAL DESCRIPTION
OF LENSEÄTHIRRING EFFECT

FOR RELATIVISTIC SCALAR PARTICLES

A. J. Silenko 1
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Belarussian State University, Minsk

Exact expression for the FoldyÄWouthuysen Hamiltonian of scalar particles is used for a quantum-
mechanical description of the relativistic LenseÄThirring effect. The exact evolution of the angular
momentum operator in the Kerr ˇeld approximated by a spatially isotropic metric is found. The quantum-
mechanical description of the full LenseÄThirring effect based on the LaplaceÄRungeÄLenz vector is
given in the nonrelativistic and weak-ˇeld approximation. Relativistic quantum-mechanical equations
for the velocity and acceleration operators are obtained. The equation for the acceleration deˇnes the
Coriolis-like and centrifugal-like accelerations and presents the quantum-mechanical description of the
frame-dragging effect.
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INTRODUCTION

The well-known LenseÄThirring (LT) effect [1] is a gravitomagnetic effect of frame-
dragging predicted by general relativity. It consists in secular precessions of the longitude
of the ascending node and the argument of pericenter of a test particle freely orbiting a
central spinning mass endowed with angular momentum. This effect also manifests itself in
a precession of the orbit and in a Coriolis-like force acting on the moving particle.
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The description of a spinless particle in a Riemannian spacetime of general relativity is
based on the covariant KleinÄGordonÄFock equation [2] added by an appropriate term describ-
ing a nonminimal coupling to the scalar curvature and conserving the conformal invariance
of the equation for a massless scalar particle [3,4]. The inclusion of the PenroseÄChernikovÄ
Tagirov term has been argued for both massive and massless particles [4].

Accioly and Blas [5] have brought the initial equation to the Hamiltonian form and have
performed the exact FoldyÄWouthuysen (FW) transformation of the Hamiltonian obtained.
They have considered a massive particle in a static isotropic metric. The transformation
method used in [5] is inapplicable to massless particles and does not cover nonstatic space-
times. As a result, an information about a speciˇc manifestation of the conformal invariance
in the FW representation has not been obtained.

The generalized method of transformation of the KleinÄGordonÄFock equation to the
Hamiltonian form useful for both massive and massless particles has been developed in [6].
Its application in [7] has allowed us to fulˇll the FW transformation and to prove the conformal
invariance of the relativistic FW Hamiltonian for a wide class of inertial and gravitational
ˇelds. General quantum-mechanical equations of motion have been derived and their classical
limit has been obtained.

In the present work, the exact FW Hamiltonian for a scalar particle in the Kerr ˇeld
approximated by a spatially isotropic metric [7] is used for a quantum-mechanical description
of the relativistic LT effect. We obtain the relativistic equation of motion for the angular
momentum operator, perform the quantum-mechanical description of the LT effect in the
nonrelativistic and weak-ˇeld approximation, and derive quantum-mechanical equations for
the velocity and acceleration operators. The results obtained are compared with the classical
description.

1. FOLDYÄWOUTHUYSEN HAMILTONIAN AND EQUATIONS OF MOTION

The initial covariant KleinÄGordonÄFock equation with the additional term [3,4] describes
a scalar particle in a Riemannian spacetime and is given by

(� + m2 − λR)ψ = 0, � ≡ 1√−g
∂μ

√
−ggμν∂ν . (1)

The PenroseÄChernikovÄTagirov coupling is deˇned by λ = 1/6. This choice of λ has been
unambiguously conˇrmed in [5,7]. Sign of λ depends on the deˇnition of R. In the present
work, the signature is (+−−−) and the Ricci scalar curvature is deˇned by R = gμνRμν =
gμνRα

μαν , where Rα
μβν = ∂βΓα

μν − . . . is the Riemann curvature tensor.
The generalized FeshbachÄVillars transformation [6] and the subsequent nonunitary one

make it possible to represent Eq. (1) in the Hamiltonian form describing both massive and
massless particles [7]:

H′ = ρ3
N2 + T ′

2N
+ iρ2

−N2 + T ′

2N
− iΥ′,
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T ′ = ∂i
Gij

g00
∂j +

m2 − λR

g00
+

1
f
∇i

(√
−gGij

)
∇j

(
1
f

)
+

√√−g

g00
Gij∇i∇j

(
1
f

)
+

+
1

4f4

[
∇i(Γi)

]2 − 1
2f2

∇i

(
g0i

g00

)
∇j(Γj) − g0i

2g00f2
∇i∇j(Γj), (2)

Υ′ =
1
2

{
∂i,

g0i

g00

}
, Gij = gij − g0ig0j

g00
, Γi =

√
−gg0i, f =

√
g00

√
−g,

where the nabla operators act only on the operators in brackets and the primes denote nonuni-
tary transformed operators. Equation (2) is exact and covers any inertial and gravitational
ˇelds.

The sufˇcient condition of the exact FW transformation [6,8,9] applied to scalar particles
equivalently, ∂0T

′− [T ′, Υ′] = 0. When this condition is satisˇed, the exact FW Hamiltonian
reads [7]

HFW = ρ3

√
T ′ − iΥ′. (3)

This equation covers all static spacetimes (Υ′ = 0) and some important cases of station-
ary ones.

The metric of the rotating Kerr source has been reduced to the ArnowittÄDeserÄMisner
form [10] by Hergt and Schéafer [11]. This form reproduces the Kerr solution only approx-
imately. The form of the metric can be additionally simpliˇed due to an introduction of
spatially isotropic coordinates and dropping terms violating the isotropy [12]:

ds2 = V 2(dx0)2 − W 2δij(dxi − Kidx0)(dxj − Kjdx0), K = ω × r. (4)

The use of the approximate Kerr metric allows us to fulˇll the exact FW transformation
when V, W , and ω depend only on the isotropic radial coordinate r. In this approximation,
the metric is deˇned by

V (r) =
1 − μ/(2r)
1 + μ/(2r)

+ O
(

μa2

r3

)
, W (r) =

(
1 +

μ

2r

)2

+ O
(

μa2

r3

)
,

(5)

ω(r) =
2μc

r3
a

[
1 − 3μ

r
+

21μ2

4r2
+ O

(
a2

r2

)]
.

Here a = J/(Mc), μ = GM/c2; the total mass M and the total angular momentum J (directed
along the z axis) deˇne the Kerr source uniquely. The leading term in the expression for
ω(r) = ω(r)ez corresponds to the LT approximation.

We can pass on from the Kerr ˇeld approximated by Eqs. (4), (5) to a frame rotating in
this ˇeld with the angular velocity o after the transformation dxi → dX i = dxi +(o×r) dx0.
The stationary metric of this frame can be obtained from Eqs. (4), (5) with the replacement
ω → Ω = ω − o. In particular, it covers an observer on the ground of a rotating source like
the Earth or on a satellite. In this case, o = J/I , where I is the moment of inertia. It should
be taken into account that frames rotating in the isotropic and Cartesian coordinates are not
equivalent. The exact FW Hamiltonian is given by Eq. (3). When λ = 1/6, the operators T ′
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and Υ′ are deˇned by [7]

T ′ = m2V 2 + Fp2F − 1
4
∇F · ∇F +

1
6
FΔF +

1
12

(x2 + y2)(Ω′
r)

2,

(6)

−iΥ′ = Ω · (r × p), F =
V

W
,

and derivatives with respect to r are denoted by indexes. In particular, for the LT metric

Ω(r) =
2GJ
c2r3

, V (r) = 1 − GM

c2r
, W (r) = 1 +

GM

c2r
. (7)

The quantum-mechanical equations of motion in the FW representation deˇning the force,
velocity, and acceleration read (p0 ≡ HFW)

F i ≡ dpi

dt
=

∂pi

∂t
+

i

�
[HFW, pi] =

1
2

∂

∂t
{giμ, pμ} +

i

2�
[HFW, {giμ, pμ}],

(8)

V i ≡ dxi

dt
=

i

�
[HFW, xi], Wi =

∂V i

∂t
+

i

�
[HFW,V i].

Any commutation adds the factor � as compared with the product of operators.
It has been proved in [13] that satisfying the condition of the WentzelÄKramersÄBrillouin

approximation allows us to use this approximation in the relativistic case and to obtain a
classical limit of the relativistic quantum mechanics. Determination of the classical limit
reduces to the replacement of operators in the FW Hamiltonian and quantum-mechanical
equations of motion in the FW representation by respective classical quantities. The classical
limit of the general FW Hamiltonian is given by [7]

H =
(

m2 − Gijpipj

g00

)1/2

− g0ipi

g00
. (9)

It coincides with the classical Hamiltonian derived in [14].
The classical limit of Eq. (8) reads

V i =
Gijpj√

g00(m2 − Gijpipj)
+

g0i

g00
,

(10)

F i = pμ
∂giμ

∂t
+ g0i ∂H

∂t
+ gij∂jH + pμVj∂jg

iμ.

It coincides with the corresponding classical equations which follow from the Hamiltonian (9)
and the Hamilton equations. Thus, the quantum-mechanical and classical equations are in the
best compliance.

For example, the exact metric of a general noninertial frame characterized by the acceler-
ation a and the rotation o of an observer is deˇned by V = 1 + a · r, W = 1, Ω = −o [15].
In this case, the classical limit of the Hamiltonian and equations of motion is given by [7]

H = (1 + a · r)
√

m2 + p2 − o · (r × p), V = (1 + a · r) p√
m2 + p2

− o× r,

(11)

W = −a(1 + a · r) − 2o× V − o× (o× r) +
2a · V + a · (o × r)

1 + a · r (V + o × r),
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where p ≡ (−p1,−p2,−p3). Leading terms in Eq. (11) reproduce well-known classical
results [16].

2. QUANTUM-MECHANICAL DESCRIPTION OF THE LENSEÄTHIRRING EFFECT

The results obtained allow us to derive quantum-mechanical equations describing the LT
effect. When a metric depends only on r, it is convenient to consider the evolution of the
angular momentum operator l = r × p. Dynamics of this operator in a frame rotating in the
Kerr ˇeld approximated by a spatially isotropic metric is deˇned by

dl
dt

=
i

�
[HFW, l] = Ω× l, Ω = ω − o. (12)

Since the operators Ω and l commute, this equation is exact for the chosen metric.
The quantity ω characterizes an evolution of the longitude of the ascending node, Υ:

Υ = Υ0 + ωt. Equations (5), (12) provide for a relativistic post-Newtonian description of
this evolution:

ω =
2GJ

c2r3

[
1 − 3GM

c2r
+

21G2M2

4c4r2
+ O

(
a2

r2

)]
. (13)

This is a part of the LT effect. The longitude of the ascending node can be measured and its
measurement is important for astrophysics.

A transition to the classical limit [13] and a calculation of the period average in the
nonrelativistic and weak-ˇeld approximation results in〈

1
r3

〉
=

1
b3(1 − e2)3/2

, ω =
2GJ

c2b3(1 − e2)3/2
, (14)

where b is the semimajor axis and e is the eccentricity.
The quantum-mechanical description of the full LT effect is based on the LaplaceÄRungeÄ

Lenz vector. In this case, we conˇne ourselves by the nonrelativistic and weak-ˇeld approxi-
mation. The operator form of the LaplaceÄRungeÄLenz vector is given by

A =
1
2
(p× l − l × p) − mkr̂, r̂ =

r
r
, k = GMm. (15)

The nonrelativistic FW Hamiltonian for the Kerr ˇeld in the LT approximation reads

HFW = ρ3

(
mc2 − k

r
+

p2

2m

)
+ Ω · l, (16)

where Ω is deˇned by Eq. (7). The precession of pericenter of the orbit is deˇned by the
commutator of the operators HFW and A:

dA
∂t

=
i

�
[HFW,A] =

1
2
(Ω × A− A× Ω) +

3G

2c2

{
J · l
r5

, (r × l − l × r)
}

. (17)

The transition to the classical limit and the calculation of the period average leads to the
LT equation:

dA
∂t

= ΩLT × A, ΩLT =
2G

c2r3
[J − 3(J · l̂)̂l], (18)

where l̂ = l/l.
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The existence of the frame dragging can also be shown. If we hold only main terms in
the relativistic FW Hamiltonian presented by Eqs. (3), (6), the velocity operator in the ˇeld
deˇned by the LT metric (7) is given by

V =
ρ3

2

{
c√

m2c2V 2 + Fp2F
,FpF

}
+ Ω × r. (19)

In the weak-ˇeld approximation, the part of the acceleration operator deˇned only by the
rotation of the source is equal to

W = Ω× V − V × Ω− Ω × (Ω× r). (20)

This equation deˇnes the Coriolis-like and centrifugal-like accelerations and therefore de-
scribes the quantum-mechanical frame-dragging effect.

It is important that the classical limit of all obtained quantum-mechanical equations coin-
cides with the corresponding classical equations.

CONCLUSIONS

The use of the exact FW Hamiltonian for scalar particles in the frame rotating in the Kerr
ˇeld approximated by a spatially isotropic metric [7] has allowed us to fulˇll the detailed
quantum-mechanical description of the relativistic LT effect. The exact evolution of the
angular momentum operator in the Kerr ˇeld approximated by a spatially isotropic metric is
found. The quantum-mechanical equation deˇning the precession of pericenter of the orbit
(full LT effect) is based on the LaplaceÄRungeÄLenz vector and derived in the nonrelativistic
and weak-ˇeld approximation. Relativistic quantum-mechanical equations for the velocity and
acceleration operators are obtained. The equation for the acceleration deˇnes the Coriolis-
like and centrifugal-like accelerations and presents the quantum-mechanical description of the
frame-dragging effect.

The classical limit of the derived quantum-mechanical equations coincides with corre-
sponding classical ones. This important conclusion conˇrms the general statement made
in [4, 7, 17] and unambiguously shows a deep connection between the relativistic quantum
mechanics of scalar particles in Riemannian spacetimes and the classical general relativity.
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