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FORWARD PHYSICS OF HADRONIC COLLIDERS
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These lectures were given at the Baikal Summer School on Physics of Elementary Particles and
Astrophysics in July 2012. They can be viewed as a concise introduction to hadronic diffraction, to the
physics of the pomeron and related topics.
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INTRODUCTION

The main focus of the experiments at high-energy hadronic colliders, such as Tevatron
and the LHC, lies in and beyond the Standard Model of the electroweak physics. In order
to produce heavy particles, experimetalists smash protons and select hard collision events,
which are initiated by large-angle scattering of individual quarks and gluons. The protons, of
course, are completely disintegrated in this scattering, and the invariant mass of the remnants
of each initial proton is very large.

However, there exists another class of hadronic processes at very high energies, which are
very rich and remarkably different form hard collisions. The main feature of these reactions
is that the initial protons remain intact or ®almost intact¯; that is, they are excited into a
hadronic system of rather small invariant mass, much smaller than the collision energy. These
are often called semihard reactions, or diffractive processes, or simply hadronic diffraction.
The experimental signature of diffraction is that all hadrons are produced at small angles,
close to the forward direction, hence the name ®forward physics¯.

Diffractive processes tell us a lot about the complicated structure of hadrons, which is
one of the main research objects in modern particle physics. For a theorist, it has additional

air because, rather surprisingly, it is the place where a vast range of theoretical approaches
can grasp some part of reality. These approaches span from purely phenomenological Regge-
theory-inspired models and all the way up to the rigorous perturbative QCD and even to the
gauge-string duality [1]. It is therefore an ideal sandbox for models or approaches which
attempt to interpolate between soft and hard regimes of strong interactions.
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The history of the subject is very long, and it continues to be written today as the
LHC experiments publish their data on various diffractive processes. In these introductory
lectures we offer a glimpse into a variety of diffraction-related topics, trying to cover theory,
phenomenology and experiment in 20 pages. Much more detailed and in-depth reviews can
be found in [2,3]. There also exist two series of topical workshops called ®Diffraction¯ and
®Low-x¯, whose proceedings will provide the interested reader with all the details.

1. FORWARD PHYSICS AND DIFFRACTION

1.1. Rapidity-Angle Diagram. Let us start with simple kinematical considerations. Each
particle produced in a collision process 
ies away in a direction deˇned by its polar angle θ and
azimuthal angle φ. In hadronic collisions, one usually uses pseudorapidity η = − ln tan (θ/2)
instead of θ itself. It carried the preˇx ®pseudo¯ because at high energies it is very close but
not exactly equal to the true rapidity, the additive kinematical quantity deˇned as 0.5 ln ((E +
pz)/(E − pz)). Thus, angular distributions of the ˇnal system produced at hadronic colliders
is described in the (pseudo)rapidity-(azimuthal) angle diagram.

The reason for choosing pseudorapidity instead of θ is that a typical multihadron ˇnal state
would be strongly peaked near the forward and backward directions if plotted against θ, while
it is distributed more or less homogeneously in the rapidity-angle diagram, see Fig. 1, top row.
Qualitatively, this happens because collision of two energetic protons leads to production of
many ®soft¯ hadrons whose transverse momenta are rather small, within 1 GeV or so, while

Fig. 1. Typical processes at high-energy hadronic colliders and their representation in the rapidity-angle

diagram
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their longitudinal momenta can be a sizable fraction of the initial proton's momentum. In
experimentalist's language, these are called ®minimum bias events¯.

There is, of course, a signiˇcant percentage of processes in which a truly hard partonic
scattering happens. It leads to production of two or more hadronic jets, collimated 
ows
of energetic hadrons. Jets appear as compact clusters on the pseudorapidity-angle diagram,
Fig. 1, middle row, but still they stand on the pedestal of soft hadrons ˇlling the diagram.

Quite often one sees a remarkable type of processes with large regions completely void
of particles, Fig. 1, bottom row. These empty regions are called rapidity gaps, and they can
extend to several units of rapidity. The ultimate form of these rapidity gap events is elastic pp
or pp̄ scattering, in which protons survive and just get de
ected by a small angle. Plotted on
the rapidity-angle diagram, they will look like two points at the opposite ends of the diagram
with an empty region of 10 units in rapidity or so.

Presence of these rapidity gap events poses a challenge. They cannot happen by chance:
with many dozens of hadrons scattered across the diagram, the probability of making a sizable
gap purely by chance is nowhere near the observed fraction of such events. Moreover, at the
LHC energies, Ep = 4 TeV, the elastic proton scattering can seem almost miraculous: the
proton is so fragile that even a tiny fraction of this energy would be enough to break it into
a splash of hadrons.

The only way out is to admit that a novel mechanism responsible for rapidity-gap events
must be at work. This mechanism must be (1) driven by strong interactions, (2) does not
have to change the quantum numbers of particles, (3) it must persist at high energies. We
can picture this mechanism as a t-channel exchange of a novel dynamical QCD object, which
is known as pomeron (the Pomeranchuk singularity). ®Hadronic diffraction¯ and ®forward
physics¯ are two roughly equivalent umbrella terms for rapidity gap events and the physics
of the pomeron exchange.

1.2. Diffractive Scattering in Quantum Mechanics. In order to get the ˇrst peek into the
physics of hadronic diffraction, let us start with the usual quantum mechanical scattering off
a central potential. Since the orbital angular momentum is conserved in this scattering, we
have the standard partial wave representation of the elastic scattering amplitiude:

f(θ) =
1

2ik

∑
�

(2� + 1)(S� − 1)P�(cos θ). (1)

The strength of the scattering in a given partial wave is encoded in the scattering matrix
element S�; having S� = 1 means no scattering in this partial wave. This expression can be
used to calculate the elastic cross section,

σel =
∫

dΩ|f(θ)|2 =
π

k2

∑
�

(2� + 1) |1 − S�|2, (2)

and, via optical theorem, the total cross section:

σtot =
4π

k
Im f(θ = 0) =

π

k2

∑
�

(2� + 1) 2(1 − Re S�). (3)

The inelastic scattering, the difference between the two, can then be written as

σinel = σtot − σel =
π

k2

∑
�

(2� + 1) (1 − |S�|2). (4)
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In a purely elastic scattering, |S�| = 1, so that the outgoing 
ux is equal to the incoming 
ux
in each partial wave. However, in the opposite case of perfectly absorbing center (®black
sphere¯) something interesting happens. Here we have zero outgoing 
ux for partial waves
that fall on the center: S� = 0 for some �. Within each of these partial waves, we get

σ
(�)
el = σ

(�)
inel =

1
2
σ

(�)
tot. (5)

In other words, despite absence of outgoing waves, we still have scattering in these partial
waves!

This scattering is due to diffraction. A portion of the incoming wave which is completely
blocked by the absorber disappears, the transmitted wave ®feels¯ this gap and begins to distort
its wave front, closing the gap. Asymptotically, these distorted wave fronts appear as scattered
waves.

It is useful to view diffraction as the process of ®actualizing¯ hidden degrees of freedom.
Although the initial plane wave propagates in a well-deˇned direction, it contains in fact
many incoming and outgoing waves, which add up just in the right way. These are the
hidden degrees of freedom which are perfectly balanced in the plane wave. Absorption breaks
this balance, making these degrees of freedom observable and leading to elastic scattering at
nonzero angles.

Optical diffraction of white light represents yet another form of this effect. All colors
add up to white light in the incoming wave, but they become imbalanced upon diffraction.
The resulting colored diffraction peaks are the manifestation of how the hidden color degree
of freedom is actualized.

The elastic scattering due to diffraction is unique in its ability to preserve a fragile system.
Even if the incoming wave corresponds to composite system with tiniest break-up energy,
diffraction still manages to de
ect this system by acting coherently on its constituents. This
picture should explain why hadronic diffraction is the ideal candidate for rapidity gap events,
in which fragile systems (protons) are slightly de
ected but not destroyed.

1.3. Diffractive Scattering of Hadrons. The high-energy QCD is a theory of quarks and
gluons. Is there a room for the pomeron exchange in it? If so, how does it arise?

There are features of the QCD pomeron which can be deduced on general grounds. First,
it must involve gluons. Indeed, it is a general result in ˇeld theory that the exchange of a
fundamental particle with spin j leads, at the tree level, to the energy behavior of the cross
section σ ∝ s2(j−1). Since elastic and diffractive scattering cross sections do not decrease
with energy, it is natural to expect that spin-1 particles (that is, gluons) are the main building
blocks of the pomeron. Second, gluons carry color, while the pomeron exchange is colorless.
Therefore, the pomeron must involve at least two gluons in the t-channel in the color singlet
state. This very simpliˇed model can already be used for rough estimates.

Upon a second thought, one can realize that the physics of the pomeron must be way
more complicated than this two-gluon-exchange picture. Indeed, this picture would lead
to cross sections which are exactly constant with energy. However, the total, elastic and
diffractive hadronic cross sections measured experimentally exhibit in fact a slow rise with
energy growth. For example, if the total pp cross section is parametrized at high energy by a
power law σtot ∝ sδ, then the ˇt yields δ ≈ 0.1.

This rise on its own could be well accommodated within the Regge picture, if the exponent
δ were constant. In reality it is not. The value of δ seems to depend on the ®hardness¯
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Fig. 2. Energy behaviour of the diffractive vector meson photoproduction cross section for different

vector mesons

of the effective pomeron-projectile vertex. One impressive example is diffractive vector
meson photoproduction, γp → V p, where V stands for any neutral vector meson: V =
ρ, ω, φ, J/ψ, Υ or their excited states, see review [6]. The energy dependence of this process
was well measured at the electronÄproton collider HERA and in ˇxed target experiments, see
Fig. 2. The value of δ steadily increases with the mass of the meson from 0.22 for ρ to 1.6
for Υ; the harder the process, the larger is δ. Describing this broad region where δ can vary
represents a challenge for the Regge picture of the pomeron.

There are also purely theoretical issues to be concerned about. First, it would be nice to
see directly how a powerlike behavior with a small δ appears from the diagram calculations.
If we imagine that the two t-channel gluons are the ˇrst approximation and then take into
account gluon interactions, we will get multiloop diagrams, which typically give us only
logarithms of energy. Next, even if we manage to derive the powerlike behavior, we run
into troubles with the Froissart bound which says that asymptotically cross section cannot
grow faster than log2 s. This means that at sufˇciently high energy the powerlike growth
must 
atten due to some nonlinear evolution mechanism. The challenge is to derive this
mechanism from the ˇrst principles in QCD.

1.4. Small-Angle Elastic pp Scattering as the Simplest Diffractive Process. Perhaps, the
simplest example of hadronic diffraction is the high-energy elastic pp (or pp̄) scattering at very
small angles (for a much deeper review, see [3]). Depending on the value of the momentum
transfer squared, |t|, it proceeds in different regimes (Fig. 3):

• At |t| of the order of 1 GeV2 or smaller, it displays hallmark features of diffractive
scattering. These are, ˇrst, the pronounced diffraction cone, that is, approximately exponential
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Fig. 3. Elastic pp scattering at the LHC energies in different |t|-regions. Shown are predictions for the

LHC from the BSW model [7]

dependence of the cross section on the momentum transfer, dσ/d|t| ∝ exp (−Bel|t|), where
the parameter Bel is called the (elastic) slope of diffraction cone, and, second, the presence
of diffractive dips and bumps in the angular distribution. In this region the true quantum-
mechanical proton diffraction takes place: two colliding protons are opaque, they partially
block each other and, consequently, diffract.

• At much larger values of |t|, the process becomes harder, so that the perturbative
QCD becomes applicable, and the scattering procees via moderate or large angle coordinated
de
ection of individual valence quarks by hard gluon exchanges.

• The Coulomb scattering amplitude due to electromagnetic interaction must be included
in the full description, and at very small t, well below 0.01 GeV2, it dominates over hadronic
scattering.

It is important to mention that the hadronic scattering amplitude in the strictly forward
case (|t| = 0) is a very important quantity because its imaginary part determines, via the
optical theorem, the total cross section of the process pp → hadrons. One can therefore
say that the total pp scattering also belongs to the ˇeld of diffraction, despite the fact that
individual channels have physics very different from diffraction.

In the diffractive region, the intensity of diffraction is related to the ®opacity¯ of the
proton. This opacity is a nonperturbatuve quantity, so it can be calculated only within some
models. However, there is a standard way to link this opacity, or the proˇle function, to the
scattering cross section, which we now expose.

This method is a slight adaptation of the quantum-mechanical diffractive scattering de-
scribed above. That method was based on partial wave expansion, which is a good expansion
basis for low-energy scattering, in which the wavelength is comparable or larger than the size
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of the scatterer. In the opposite situation, that is, at high energies, there are many partial
waves which are blocked by the absorbed. Quasiclassically, a partial wave with the orbital
quantum number � corresponds to the typical impact parameter b ∼ ��/p. If the scatterer is
large, R � λ, we get � � 1. So, instead of partial wave expansion we can use another basis:
impact parameters expansion, in which we describe scattering in terms of two-dimensional
impact parameter b between the centers of the two colliding protons. Its conjugate variable
is q, the transverse momentum transfer, and the quantum-mechanical scattering amplitude can
be written, instead of partial wave expansion, as

f(θ) =
1

(2π)2

∫
d2b eiqbf(b). (6)

Switching from the quantum-mechanical to quantum-ˇeld-theoretical description of the scat-
tering process, we introduce the (diagonal) scattering matrix in the b-space, S(b)〈pp|Ŝ|pp〉.
It is diagonal because at very high energies, there is strong time dilatation for the protons,
and the interaction is so quick that the proton's centers of mass have no time to shift.

Then, as usual, we write the S-matrix as 1+ ia(s,b), where a(s,b) is the proˇle function
describing the opacity of the proton. The differential cross section becomes

dσel

d|t| =
|M(s, t)|2

16πs2
, where M(s, t) = 2s

∫
d2b eibqa(s,b). (7)

One can then ˇnd that

σel =
∫

d2b |a(s,b)|2, σtot = 2
∫

d2b Im a(s,b). (8)

Now comes the modeling. Since the pomeron exchange is short-ranged, a(s,b) has a
compact shape with typical size of ∼ 2Rp, the proton diameter. Also, a is mostly imaginary.
So it can be phenomenologically parametrized in the ˇrst approximation as

a(s,b) = ia0(s) exp
(
− b2

2Bel

)
, (9)

where we expect Bel ∼ R2
p ∼ 1 fm2 ≈ 25 GeV−2. Then we get

dσel

d|t| = πB2
ela

2
0 e−Bel|t| , σel = πBel a

2
0. (10)

This gives a hint how an approximate exponential dependence comes about from a compact
proˇle function. Also, the slope Bel is clearly related with the size of the proton, and therefore
it cannot be calculated from pQCD. But it can be found from a ˇt to the experimental data;
a ˇt to the Tevatron data gives

Bel ≈ 17 GeV−2, a0 = 0.974± 0.042.

The diffraction slope roughly agrees with the expectations.
The fact that a0 is close to 1 means that the proton (at the TeV energies) is indeed very

opaque, at least near its center. This is usually formulated as the pp scattering approaching
the black disc limit in the head-on collision. Indeed, S(b = 0) = 1 + ia(b = 0) =
1 − a0 	 1. This conclusion has very important implications for the partonic structure
of the proton, the evolution and saturation of partonic densities, etc. This is one of the
many examples of interplay between nonperturbative and perturbative physics which arise in
diffractive scattering.



Forward Physics of Hadronic Colliders 1215

2. EXPERIMENTAL ISSUES

Studying rapidity gap processes at hadronic colliders is a challenging business, and it
becomes even harder with the energy growth. The main problem can be seen from kinematics.
If typical transverse momenta of diffractively produced particles are of order 100 MeV, while
the longitudinal momenta at the LHC are ≈ Ep = 4 TeV, then the typical scattering angle
is of the order of one arcminute or less. Such particles cannot be observed by the main
detectors simply because they do not leave the vacuum pipe on the detector scales. In fact,
the situation is worse because these scattered particles do not even leave the parent beam over
long distances. Therefore, studying diffraction immediately imposes speciˇc requirements on
instrumentation, both on the accelerator and detector side.

2.1. Roman Pot Detectors. A proton which is scattered elastically at the LHC and which
gains the transverse momentum of 100 MeV, leaves the beam only several dozen meters
downstream. If would leave the beam pipe kilometers downstream, and therefore tracking
this proton with the conventional detectors becomes impossible. The idea, which goes back to
the 1970s, is to construct very small detectors and put them inside the vacuum pipe. Detectors
of this type are called Roman Pots. They are movable: one should be able to approach the
beam as close as possible, ideally within several millimeters, but at the same time one should
be able to retract them in safe position at the stages when the beam is not yet safe (when
it is injected, accelerated, and squeezed). Roman Pots are implemented in one of the LHC
experiments, TOTEM [4], and other similar detectors are also being developed (for example,
the FP420 project [5]).

In Fig. 4 we show a Roman Pot station of TOTEM, one of the seven experiments working
at the LHC, and its plate with the pixel detector. Note the unusual shape of the detector: it
has a naked sensitive edge with no dead material which allows it to approach the beam as
close as possible.

One additional remarkable thing about the Roman Pot detectors is that they can detect
protons which are scattered at exactly zero angle, provided that they lose about 1% of their
energy at the collision. We leave it as a simple excercise to the reader to determine at what
distance downstream one must place a Roman Pot detector to achieve this feat.

Fig. 4. Roman Pot station of TOTEM [4] (a) and one of the pixel detector plates used in it (b)
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2.2. Large-β∗ Beams. The proton beams are strongly focused by quadrupole magnets just
before the collision points. This is done to achieve the highest particle density at the point
of bunch crossing and reach the highest luminosity. As a result, the beams have an intrinsic
angular spread. If a proton is scattered by an angle smaller than this spread, it will stay inside
the beam and will never be detected.

The way out of this difˇculty is to defocus beams, reducing their instrinsic angular spread
and making them as parallel as possible. This will, of course, strongly reduce the luminosity,
but since all diffractive cross sections are large, it will not be a problem for the event rate.

Focusing of the beams are usually characterized by the value of β∗, which is the distance
downstream from the focusing point where the beam geometric cross section becomes twice
larger. The tighter the focusing, the smaller is β∗. The nominal value at the LHC is
β∗ = 0.55 m. During special runs dedicated to forward physics, the beams are brought into
conˇguration with β∗ = 90 m and even up to 1.54 km. These special runs are very short but
they are foreseen by the LHC schedule. Figure 3 shows, among other, which t-regions in the
elastic pp scattering at the LHC can be probed with various β∗-conˇgurations.

2.3. Coping with the Pile-Up. Yet another problem concerns attributing the protons de-
tected in the Roman Pot to a speciˇc hard collision. At the LHC, each beam crossing results
in several or even several dozens of individual protonÄproton scatterings. Each of them pro-
duces lots of tracks, see Fig. 5, which are recorded by the main detector. In addition, there
might be a signal coming from the Roman Pots placed at hundreds of meters away of a proton
de
ected by a small angle. This proton must originate from one of these individual primary
vertices, but from which one?

The only way to ˇnd it is to measure the timing of the proton detection in Roman Pots
with sufˇcient precision. The goal here is to reach 10 ps accuracy, which will allow one to
distinguish vertices several millimeters apart. Unfortunately, this goal is not yet reached, but
experimentalists keep working on this issue.

Luckily, the pile-up is not an issue in the large-β∗ conˇguration. Nevertheless, there
are speciˇc processes such as central exclusive Higgs production [8], which have very small
cross section and must be studied with tightest focusing possible. Then, achieving good
timing resolution becomes a must.

Fig. 5. Illustration of the pile-up: this multiparticle event has 13 reconstructed primary vertices

corresponding to independent individual pp scattering events in a single bunch crossing
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3. POMERON IN A TOY MODEL

As mentioned above, the powerlike energy behavior of the cross section with a small non-
integer exponent looks somewhat strange because loop diagrams usually produce logarithms
of energies. However, it turns out that when all diagrams are resummed in the leading
logarithmic approximation, such a power law can arise.

This is exactly what happens in QCD for the quark and gluon exchanges and is known as
reggeization of the quark and gluon. For the pomeron, the situation in the real QCD is not
that simple, but the series of the loop diagrams can still be resummed. In this section we will
illustrate how such a resummation can work in a very simple toy model, which is taken from
the book [10] with some further simpliˇcations.

Consider a theory with massless scalar ®quarks¯ and massive scalar ®gluons¯ with mass m
which interact via trilinear vertices with equal couplings mg (m is introduced into trilinear
coupling to make g dimensionless). For calculational simplicity, we also suppress the color
degree of freedom, which plays important role in the true QCD.

Consider now the imaginary part of the high-energy elastic ®quarkÄquark¯ scattering at
nonzero t. We want to recover the powerlike behavior

ImM(s, t) ∝ sαP (t), (11)

and ˇnd the value of the pomeron intercept αP (t).
3.1. One-Loop Result. The one-gluon exchange diagrams give a purely real amplitude;

therefore, we start with the one-loop two-gluon-exchange diagrams (we disregard annihilation
diagrams because they contain quarks in the t-channel which are suppressed in true QCD). At
this order, we have two diagrams shown in Fig. 6. One can check that the nonplanar diagram
does not have the imaginary part due to kinematics, so we focus on the box diagram only.

The imaginary part at the 1-loop level can be calculated by applying Cutkosky's rules,
which are a generalization of the optical theorem:

ImM(1) =
1
2

∫
dF2A2→2(k)A†

2→2(k − q), (12)

where dF2 is the two-particle phase space,

dF2 =
d4�1

(2π)3
δ(�2

1)
d4�2

(2π)3
δ(�2

2)(2π)4δ(4)(p1 + p2 − �1 − �2), (13)

Fig. 6. One-loop diagrams for qq scattering in the toy model; only the planar box diagram gives

contribution to the imaginary part of the amplitude
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while A2→2 is the tree-level 2 → 2 scattering amplitude,

A2→2(k) =
m2g2

k2 − m2 + iε
. (14)

One integration in (12) can be immediately done, giving

ImM(1) =
1

8π2

∫
d4kδ[(p1 − k)2]δ[(p2 + k)2]

m4g4

(k2 − m2)((k − q)2 − m2)
. (15)

It is now convenient to use Sudakov variables. In the center of motion frame we write

pμ
1 =

√
s

2
(1, 0, 0, 1), pμ

2 =
√

s

2
(1, 0, 0,−1), (16)

so that p2
1 = 0 = p2

2, (p1+p2)2 = 2p1p2 = s. Then the ®gluon¯ momentum is parametrized as
kμ = αpμ

1 −βpμ
2 +kμ

⊥ and d4k = −(s/2)dαdβ d2 k, where k is the 2D transverse momentum.
The two delta-functions then become δ[β(1−α)s−k2] and δ[α(1− β)s−k2]. An important
observation is then that typical k2 	 s, so that α = β ≈ k2/s 	 1. Therefore,∫

dα dβ δ[(p1 − k)2] δ[(p2 + k)2] ≈
∫

dα dβ δ(βs − k2)δ(αs − k2) =
1
s2

.

Also, k2 = −αβs− k2 ≈ −k2 and (k − q)2 ≈ −(k− q)2. Bringing all coefˇcients together,
we ˇnally get the one-loop result:

ImM(1) =
m4g4

16π2s

∫
d2k

(k2 + m2)((k − q)2 + m2)
. (17)

Note that at this level, the intercept αP = −1 is an integer number and is consistent with the
fact that we have scalar particles exchanged in the t-channel.

3.2. Two-Loop Result. We start the analysis of the two-loop contribution with the ladder
diagram shown in Fig. 7. Again, by Cutkosky's rules, we get

ImM(2) =
1
2

∫
dF3 A2→3(k1, k2)A†

2→3(k1 − q, k2 − q), (18)

where dF3 is the three-particle phase space,

dF3 =
d4�1

(2π)3
δ(�2

1)
d4�2

(2π)3
δ(�2

2)
d4�3

(2π)3
δ(�2

3)(2π)4δ(4)(p1 + p2 − �1 − �2 − �3),

and A2→3 is 2 → 3 tree-level scattering amplitude,

A2→3(k1, k2) =
m6g6

(k2
1 − m2)(k2

2 − m2)
. (19)

Consider ˇrst the longitudinal integral
∫

dα1 dβ1 dα2 dβ2 δ(�2
1)δ(�2

2)δ(�2
3). Using Sudakov

variables, ki = αip1 − βip2 + ki⊥, we get

�2
1 = (1 − α1)β1s − k2

1,

�2
2 = (α1 − α2)(β2 − β1)s − (k1 − k2)2 = 0,

�2
3 = (1 − β2)α2s − k2

2 = 0.

(20)
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Fig. 7. The only two-loop diagram contributing to the imaginary part in the leading logarithmic
approximation

Then in the remaining integration we note that there is a logarithmically enhanced contribution
from the region

1 � α1 � α2 ≈ k2
2

s
,

k2
1

s
≈ β1 	 β2 	 1, α1β2 =

(k1 − k2)2

s
, (21)

and the longitudinal integral becomes

1
s2

∫
dα1 dβ2 δ[α1β2s − (k1 − k2)2 =

1
s3

∫
dα1

α1
=

1
s3

log
(

α1max

α1min

)
≈ 1

s3
log

(
s

|t|

)
.

Note that the exact limits α1 max and α1 min are inessential when we care only about logarith-
mic contribution. After all calculatons, we get the following two-loop result:

ImM(2) =
m6g6

256π5s
log

(
s

|t|

)[∫
d2k

(k2 + m2)((k − q)2 + m2)

]2

= ImM(1) x, (22)

where

x =
m2g2

16π3
log

(
s

|t|

) ∫
d2k

(k2 + m2)((k − q)2 + m2)
. (23)

Fig. 8. Examples of two-loop diagrams which are suppressed for the toy model but are equally important

in QCD
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Before we move on, let us note that all other two-loop diagrams, for example, those shown
in Fig. 8, are suppressed with respect to the ladder diagram, either by a power of s or due to
absence of a logarithm. Note, however, that this is where our toy model is different from the
true QCD, where such diagrams are equally important.

3.3. n-Loop Result. Consider now the n-loop ladder diagram, Fig. 9. The experience we
gained in the previous cases allows us to expect that with each extra loop we get not only
an extra g2 factor but also an extra logarithm log (s/|t|), which comes from longitudinal
integrals. In the transverse integrals, we do not expect to get any logarithmic enhancement.

The calculations conˇrm this expectation. The longitudinal integral

∫
dα1dβ1 · · · dαn dβn δ(�2

1) · · · δ(�2
n+1)

gets the correct power of logarithms which come from the so-called multi-Regge kinematics

1 � α1 � . . . � αn−1 � αn ≈ |t|
s

,
|t|
s

≈ β1 	 β2 	 . . . 	 βn 	 1 (24)

and is calculated as

1∫
|t|/s

dαn−1

αn−1

1∫
αn−1

dαn−2

αn−2
· · ·

1∫
α3

dα2

α2

1∫
α2

dα1

α1
=

1
n!

log
(

s

|t|

)n

.

The transverse integrals are all of the same type as before. Therefore, we get the n-loop
contribution to the leading logarithmic approximation:

ImM(n) = ImM(1) xn

n!
(25)

with the same x as in (23).

Fig. 9. Mulitloop ladder diagram
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3.4. Resumming All Loops. This simple form of the n-loop contribution allows us to
resum all loops in the leading logarithmic approximation, that is, in the approximation in
which we retain the largest (leading) kinematical logarithms for each order of perturbative
expansion. The result is simply

ImM = ImM(1)

(
1 + x +

x2

2!
+ . . .

)
= ImM(1) ex. (26)

Substituting x, we indeed obtain the Regge-like power law (11) with the intercept

αP (t) = −1 +
g2m2

16π3

∫
d2k

(k2 + m2)((k − q)2 + m2)
. (27)

Calculation of the remaining integral for nonzero q is left for the reader. In particular,

αP (0) = −1 +
g2

16π2
. (28)

This exercise illustrates how a noninteger exponent of energy can appear in diagrammatic
calculations.

4. SOME FEATURES OF THE QCD POMERON

4.1. BFKL Theory. The perturbative QCD pomeron in the leading logarithmic approxi-
mation was derived by Balitsky, Fadin, Kuraev and Lipatov in 1976Ä1978 [9] and is known
as the BFKL pomeron. The derivation was way more complicated than the simple scalar toy
model explained above. In particular, in QCD there are nontrivial numerators for gluon cou-
plings which requires additional diagrams to be taken into account. These diagrams are not
strictly speaking of the ladder type, but using the trick of nonlocal Lipatov's vertices they can
be rearranged in a way that looks like an effective ladder diagram. However, the t-channel
gluons in these ladders are not bare but reggeized gluons; that is, they themselves are ladders
with the gluon quantum numbers. Still, these complications were successfully overcome, and
the resulting solution for the pomeron as the leading singularity with the vacuum quantum
number exchange was found. A pedagogical introduction into these calculations can be found
in the book [10] and lectures [11].

For ˇxed αs the solution is not a Regge pole but a Regge cut. The edge of the cut, the
leading singularity, has the intercept

αP (0) = 1 +
4Ncαs

π
ln 2, (29)

where Nc = 3 is the number of colors.
A decade ago the BFKL analysis was extended in the next-to-leading logarithmic approx-

imation. This was a very long and complicated project, which culminated in the complete
expression for the nonforward BFKL kernel at the next-to-leading logarithmic approxima-
tion [12]. As expected, the pomeron intercept was signiˇcantly reduced but was still notice-
ably above one.
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4.2. Comparing with Phenomenology. This result caps an important theoretical achieve-
ment, but if one tries to apply it to the phenomenology, several uneasy questions emerge (an
overview of this tension can be found in lectures [13]).

First, the intercept of the BFKL pomeron is too large. Taking, for example, αs = 0.15,
one gets αP ≈ 1.4, and σ ∝ s0.8. Thus, such a pomeron cannot explain the very slow energy
growth which one observes in the total, elastic and diffractive cross sections. Inclusion of the
next-to-leading logarithmic corrections relieves the tension a bit but does not completely cure
this problem.

Even more disturbing is the fact that the dependence on hardness of the interaction is
opposite to what we observe experimentally. Indeed, the softer the process, the larger is αs,
and the stronger is the energy growth according to the BFKL dynamics. But the data show a
completely opposite trend.

The lesson that one learns here is that the BFKL result does not exhaust the full mech-
anism behind the pomeron. A better picture would be to think of the BFKL pomeron as
the ®hard¯ perturbative contribution to the pomeron exchange, and that there should exist a
®soft¯ nonperturbative contribution with a very small or maybe even zero intercept. When
the hardness of the pomeron-projectile vertex increases, the hard contribution becomes more

Fig. 10. The effective gluon lad-
der of the BFKL pomeron and

two complications which arise in

its phenomenological applications:
the necessity to know the impact

factors and the soft-hard diffusion

and more pronounced due to increased coupling to the pro-
jectile. This two-pomeron picture was popularized by Don-
nachie and Landshoff [14] who based their suggestion on
pure phenomenological grounds, but it is also qualitatively
supported by a more detailed analysis of the gluonic density
in the proton [15].

There are additional obstacles which make application
of the beautiful BFKL theory to the real world difˇcult if
possible at all. First, the BFKL evolution equation allows
one to understand the properties of the pomeron itself. If
we want to calculate scattering of physical particles, for
example protons, we need to couple the pomeron to them.
Within the BFKL formalism, this coupling is described via
impact factors, see Fig. 10. These impact factors are quite
easy to calculate for fundamental particles (quarks, gluons,
even photons), but they cannot be calculated perturbatively
for protons. Therefore, a great deal of phenomenological
modelling must be involved.

Another complication is related with the phenomenon
called soft-hard diffusion [16]. The BFKL pomeron treats
the gluons perturbatively, and for this assumption to be legit-
imate, one needs to assume that the typical gluon momenta
in all loops from the top to the bottom of the ladder are

large. Experimentally one can control only the uppermost or lowermost loops, for example,
by studying processes induced by photons with very high virtuality. However, it turns out
that even if the uppermost loop is hard, then the following loops becomes softer and softer.
As a result, a fully developed ladder with several loops will still be dominated by the soft
gluons in the middle. This is an intrinsic feature of the gluonic ladder and cannot be cured.
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The third problem concerns the Froissart bound. Since the BFKL pomeron has an intercept
strictly larger than 1, it would violate the Froissart bound at asymptotically large energies. It
means that at such energies there must be a mechanism which slows down the energy growth
of the cross sections.

One obvious possibility is to include multi-pomeron exchanges. However, the rigorous
QCD calculations show that the situation is much more complicated than that. In fact,
it seems now established that pomerons can directly interact with each other, merging or
splitting or even producing intermediate pomeron loops in the t-channel. The details of this
pomeron interaction are still the matter of hot debates. In the partonic language, the pomeron
interactions lead to nonlinear evolution of the partonic densities and their eventual saturation.
How to write these evolution equations in the most correct way, how to solve them, how they
can be related with the observable phenomena, and do we really see the signals of saturation
in the experimental data at the LHC, are among the issues on which no consensus is yet
reached.

It seems that all these difˇculties make the applicability of the BFKL formalism to the
real processes very questionable, at least at the quantitative level. However, it does not
mean the BFKL approach is of no use. Being a rigorous and exactly solvable feature of
perturbative QCD, it plays the role of an ®idealization¯ to which the true hadronic processes
seem to tend. The qualitative features of the BFKL dynamics have become a very useful
guide in understanding the real world semihard processes.
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