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As is well known, a certain lack of theoretical understanding of the mechanisms governing various
phenomena exists in several areas of physics. In particular, it concerns those which involve transport
of charged particles in low dimensions. In this work, the physics of the 2-dimensional charge transport
with parallel (in plane) magnetic ˇeld is analyzed from the geometrical and algebraic viewpoints with
emphasis on how the physical interpretation arises from a consistent mathematical formulation of the
problem. As a new result of this investigation with respect to the current literature, we explicitly show
that: i) the speciˇc form of the low-dimensional Dirac equation enforces the ˇeld solution to fulˇll the
Majorana condition; ii) the quantum Hall effect is successfully explained; iii) a new topological effect
(as described by the AharonovÄCasher theorems) is presented, and iv) the link with supersymmetrical
models is brie	y commented.

Š ± ¨§¢¥¸É´μ, ¸ÊÐ¥¸É¢ÊÕÉ ¶·μ¡¥²Ò ¢ ¶μ´¨³ ´¨¨ ³¥Ì ´¨§³μ¢ · §²¨Î´ÒÌ ¶·μÍ¥¸¸μ¢ ¢ μ¶·¥¤¥-
²¥´´ÒÌ μ¡² ¸ÉÖÌ Ë¨§¨±¨. ‚ Î ¸É´μ¸É¨, ÔÉμ μÉ´μ¸¨É¸Ö ± ¶¥·¥´μ¸Ê § ·Ö¦¥´´ÒÌ Î ¸É¨Í ¢ Ê¸²μ¢¨ÖÌ ´¥-
¡μ²ÓÏ¨Ì · §³¥·´μ¸É¥°. ‚ ¶·¥¤¸É ¢²¥´´μ° · ¡μÉ¥ Ë¨§¨±  ¤¢Ê³¥·´μ£μ ¶¥·¥´μ¸  § ·Ö¤  ¢ ¶²μ¸±μ¸É¨,
¶ · ²²¥²Ó´μ° ³ £´¨É´μ³Ê ¶μ²Õ, · ¸¸³ É·¨¢ ¥É¸Ö ¸ £¥μ³¥É·¨Î¥¸±μ° ¨  ²£¥¡· ¨Î¥¸±μ° ÉμÎ¥± §·¥-
´¨Ö ¸  ±Í¥´Éμ³ ´  Éμ, ± ± Ë¨§¨Î¥¸± Ö ¨´É¥·¶·¥É Í¨Ö ¢μ§´¨± ¥É ¨§ ³ É¥³ É¨Î¥¸±μ° Ëμ·³Ê²¨·μ¢±¨
¶·μ¡²¥³Ò. �μ²ÊÎ¥´Ò ¸²¥¤ÊÕÐ¨¥ ´μ¢Ò¥ ·¥§Ê²ÓÉ ÉÒ: 1) μ¸μ¡ Ö Ëμ·³  ´¨§±μ· §³¥·´μ£μ Ê· ¢´¥´¨Ö
„¨· ±  ¶·¨¢μ¤¨É ± Éμ³Ê, ÎÉμ ¶μ²ÊÎ ¥³μ¥ ·¥Ï¥´¨¥ μ¡Ö§ É¥²Ó´μ Ê¤μ¢²¥É¢μ·Ö¥É Ê¸²μ¢¨Õ Œ °μ· ´Ò;
2) Ê¸¶¥Ï´μ μ¡ÑÖ¸´Ö¥É¸Ö ±¢ ´Éμ¢Ò° ÔËË¥±É •μ²² ; 3) μ¡´ ·Ê¦¥´ ´μ¢Ò° Éμ¶μ²μ£¨Î¥¸±¨° ÔËË¥±É
(μ¶¨¸ ´´Ò° É¥μ·¥³ ³¨ � ·μ´μ¢ ÄŠÔÏ¥· ) ¨ 4) ±· É±μ μ¡¸Ê¦¤ ¥É¸Ö ¸¢Ö§Ó ¸ ¸Ê¶¥·¸¨³³¥É·¨Î´Ò³¨
³μ¤¥²Ö³¨.

PACS: 04.20.Gz

1. INTRODUCTION: WHEN MATHEMATICS ANTICIPATES PHYSICS

Every scientist throughout his life probably comes across the ideas of the mathematician
Hermann Weyl and the physicist Paul Dirac. They attracted (and do attract up to now) the
attention of everybody not merely as great scientists but also as great hunters for beauty. ©My
work has always tried to unite the true with the beautiful and when I had to choose one or
the other, I usually chose the beautifulª, Å wrote Weyl [1, 3].

1E-mail: diego777jcl@gmail.com
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©Physical laws should have mathematical beautyª, Å wrote Dirac on the blackboard
in the Moscow University in the fall of 1955. The reason for the mysteries that most of
the time truth and beauty are the same is that there need not to be con	ict between them,
discusses David J. Gross in his essay [1, 2] in detail: ©. . . the mathematical structures that
mathematicians arrive at are not artiˇcial creations of the human mind but rather have a
naturalness to them as if they were as real as the structures created by physicists to describe
the so-called real world. Mathematicians, in other words, are not inventing new mathematics,
they are discovering it . . . we might expect that physical and mathematical structures would
share the characteristics that we call beauty. Our minds have surely evolved to ˇnd natural
patterns pleasingª. As is well known, in 1937 the brilliant Italian physicist Ettore Majorana
proposed a new representation [4] corresponding to the celebrated Dirac equation, where
the components of the bispinor solution are related by complex conjugation. However, in
the middle of his personal troubles, he could not have foreseen the whirlwind of activity that
would follow: not only in particle physics, which was his domain, but also in nanoscience and
condensed matter physics. The particles described by these solutions (the so-called Majorana
fermions) were strange objects of the physical contemporary research. The recent storm of
activity in condensed matter physics has focused on the ©Majorana zero modesª, i.e., emergent
Majorana-like states occurring at exactly zero energy that have a remarkable property of being
their own antiparticles (self-conjugated). Sometimes, this property is expressed as an equality
between the particle's creation and annihilation operators. As explained more fully below,
there exists the general idea that any ordinary fermion can be thought of as composed of two
Majorana fermions: this is only a partial picture. The real fact is that there exists a particular
representation where a fermion effectively can be represented as bilinear combination of two
states of fractionary spin, as was demonstrated by the author in [5] and other researchers in
different contexts.

On the other hand and with other motivations, Aharonov and Casher proved two theorems
for the case of a 2D magnetic ˇeld [6]. The ˇrst theorem states that an electron moving in
a plane under the in	uence of a perpendicular inhomogeneous magnetic ˇeld has N ground-
energy states, where N is the integral part of the total 	ux in units of the 	ux quantum
Φ0 = 2π/e ≡ hc/e(m = 1). The corresponding Dirac equation for the AharonovÄCasher-
Theorem (ACT) conˇguration is 1

[σx(∂x − ieAx) + σy(∂y − ieAy)]ϕ = 0. (1)

The interesting remark of Aharonov and Casher is that if we introduce the transformation

ψ = eeφσz ϕ, (2)

this transformation (phase) permits us to eliminate explicitly the magnetic ˇeld from the Dirac
equation where φ satisˇes the relations

∂xφ = Ay, ∂yφ = −Ax (3)

and ϕ is eigenfunction of σz(σzϕs = sϕs). Having accounted that B(x, y) = ∂xAy − ∂yAx,
we arrive at

B(x, y) =
(

∂2

∂x2
+

∂2

∂y2

)
φ. (4)

1We denote the ˇxed reference system as X, Y, Z and the coordinates in plane by x1, x2, x3.
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Asymptotically for r → ∞(r ≡
√

x2 + y2) we have

φ(x, y) =
Φ
2π

ln
(

r

r0

)
, (5)

where

Φ =
∫

B(x, y) dx dy (6)

is the total magnetic 	ux through the (x, y) plane; r0 is some real constant that plays the role
of minimal length. Consequently, we immediately obtain

ϕs =
(r0

r

)Φs/Φ0

ψs(w), (7)

where w = x + isy and ψs(w) is an entire function of w because after the elimination of the
magnetic ˇeld from Eq. (1) it takes the simplest form

(∂x + is∂y)ψs(w) = 0. (8)

To make ϕs be a square integrable function, we should consider Φs > 0 and ψs has to be
a polynomial whose degree is not greater than N − 1, where N = {Φ/Φ0}, obtaining N
independent solutions for ψs: 1, w, w2, . . . , wN−1. Through this paper the same procedure
as for the ACT conˇguration will be performed; however, it will be in the interesting case of
©in-planeª (parallel) magnetic ˇeld.

The plan of this paper is as follows. In Sec. 2, we obtain the conditions where the
magnetic ˇeld parallel to the charge transport can be ©removedª as in the case of the ACT.
The conditions fulˇlled by the solution: types of spinors and 	ux quantization are also in
Sec. 2. In Sec. 3, the origin and conditions where the quantum Hall effect appears from the
©in-planeª magnetic ˇeld are explicitly shown. In Sec. 4, we obtain as solution to our problem
the coherent states belonging to the Metaplectic group. These solutions fulˇll the symmetries
and algebra of Majorana states: the relation with supersymmetry is brie	y described. Finally,
in Sec. 5 we give our concluding remarks and perspectives.

2. MAGNETIC FIELD ©IN PLANEª

Now the magnetic ˇeld B, in contrast to the ACT conˇguration described before, is
parallel to the plane deˇned by x, y axis (usually denominated: ©B in planeª) where we have
the dynamics of the particle. Explicitly the Dirac equation with the magnetic ˇeld parallel
takes the following form:

[σB∂B + σ⊥(∂⊥ − ieA⊥) − ieσzAz ]ϕ = 0. (9)

Here, the subscripts B, ⊥ and z denote the direction of the B ˇeld in the plane, the direction
of the component of the potential vector in the plane (obviously, perpendicular to the B
direction) and the direction of component of the potential vector coincident with the z axis,
respectively.
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By deˇning ω the angle of the magnetic ˇeld with respect to the x axis in the plane x−y,
the transformation (2) takes in this case the following general form:

ψ = ei(ασx+βσy) ϕ = eieφ·σB ϕ (10)

with

α = λ cos ω, β = λ sin ω, (11)

|φ|2 = λ2(cos2 ω + sin2 ω) = λ2 ⇒ |φ| = ±|λ|. (12)

Equation (9) explicitly written (taking into account (10)) is

[σx∂x + σy∂y − ieA⊥(σx sin2 ω + σy cos2 ω) − ieσzAz] ϕ = 0. (13)

It is easily seen that when ω = 0, B coincides with x axis and when ω = π/2, B coincides
with the y axis. The Lie algebraic relation holds:

σBσ⊥ = (cos ωσx + sin ωσy) (− sin ωσx + cos ωσy) = iσz (14)

as expected.
Operating similarly as in the ACT conˇguration (but having account for the new trans-

formation and physical situation), we obtain the conditions where the magnetic ˇeld can
be eliminated. Precisely, using expression (10) in (9), we obtain explicitly the following
nontrivial conditions:

−∂⊥φ = iAz, ∂Bφ = −A⊥σ⊥. (15)

The ˇrst equation is precisely as in the ACT case, but for the second one the interpretation
is more involved. The interpretation suggests, in principle, a complex structure for the ˇeld φ:
for example, in a doublet form. The doublet can be written as

φ ≡
(

φ1

φ2

)
, (16)

then the previous expressions belong to

−∂⊥φ1 = −∂⊥φ2 = iAz and ∂Bφ1 = −∂Bφ2 = iA⊥. (17)

Notice that the above condition suggests consequently the introduction of two real functions u
and v as

φ ≡
(

φ1

φ2

)
=
(

φ1

φ∗
1

)
=
(

u (x⊥) + iv (xB)
(u (x⊥) + iv (xB))∗

)
(18)

in such a manner that the conditions to remove the magnetic ˇeld are automatically fulˇlled if

−∂⊥φ = iAz and ∂Bφ = A⊥. (19)

Remark 1. Notice that (18) is a Majorana condition over φ that appears as a consequence of
the magnetic ˇeld parallel (in a sharp contrast to that in the ACT case).
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2.1. Structure of the Magnetic Field: Conditions over A and φ. The magnetic ˇeld can
be effectively generated (B = ∇ ∧ A) from the vector potential components of our problem,
namely, Az and A⊥.

The ©in-planeª magnetic ˇeld is consequently

BB = (∂⊥Az − ∂zA⊥), (20)

where the simplest possibility was taken: A 	= A(xB) (e.g., the vector potential does not
depend on the direction of the magnetic ˇeld, only on the plane deˇned by x⊥ and xz).
From (19) we have

B = i∂2
⊥φ =

Φ
x⊥

, (21)

where the total transversal 	ux to the plane per unit of longitude was used. Then φ is
immediately obtained:

φ · σB = −i (ΦσB)x⊥

[
ln
∣∣∣∣x⊥

l0

∣∣∣∣− C − x⊥
x⊥

]
. (22)

By putting the arbitrary constant C = 0 for simplicity, the behaviour of the exponential
function in (10) belongs to

e−ieφ·σB =
∣∣∣∣ l0
x⊥

∣∣∣∣
eΦ
l0

σBx⊥

exp
(
−eΦ

l0
σBx⊥

)
, (23)

with l0 some real constant with units of length (its physical meaning will be analyzed later).
Similarly as in the ACT case, the following condition must be fulˇlled in order that ϕ be
normalizable and square integrable:

ΦsB � 0 (24)

(sB is the spin in the B direction) due to

ϕ = e−ieφ·σB ψ(s, w). (25)

In the above expression, the function ψ depends on the spin and on some complex variable w
to be determined from the DiracÄWeyl equations.

2.2. Majorana, DiracÄWeyl States and Discrete Coordinates: Conditions over ψ(s, z).
The simple DiracÄWeyl equation obtained (after the procedure to remove the magnetic ˇeld) is

(e−ieφ·σB σB∂B + eieφ·σB σ⊥∂⊥)ψ(s, z) = 0. (26)

To solve the equation, a quantization should be imposed on the 	ow (strictly on the product
φ · σB). This fact will induce an automatic discretization over the ©in-planeª transverse
coordinate x⊥:

φ · σB = nπ, n = 0, 1, 2 . . . (27)

If the above condition holds, we obtain

(σB∂B + σ⊥∂⊥)ψ(s, z) = 0. (28)

This expression is very important: this is a simple 2-dimensional Dirac equation without Aμ.
The particular phase introduced as ansatz plus a quantization condition nullify the effect of
the magnetic ˇeld.
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2.3. Analysis of the Solution. When taking account of the speciˇc form of the above
equations there are two possibilities for the solution ψ. These possibilities are related with
the spin degrees of freedom as follows:

i) σBψ(s, z) = sψ(s, z) (eigenspinor of σB).
This case is compatible with the assumption that the state is eigenvector of the spin in the

magnetic ˇeld direction. The Dirac equation is reduced to(
∂B +

iC

s
∂⊥

)
ψ (s, z) = 0, (29)

with C the charge conjugation operator. Then ψ(s, z) (and, for instance, ϕ(s, z)) must fulˇll
the Majorana condition:

Cϕ(s, z) = ±cϕ (s, z). (30)

Similarly as in the AC case, ψ(s, z) is an entire function of z = xB +
ic

s
x⊥ but the state

solution is of Majorana type.
ii) σzψ(s, z) = sψ(s, z) (eigenspinor of σz).
In this case the spin remains as in the ACT situation (e.g., in the z direction). Now the

Dirac equation is reduced to
(∂B + is∂⊥)ψ (s, z) = 0. (31)

Similarly as in the AC case, ψ(s, z) is an entire function of z = xB + isx⊥, and the state
solution is DiracÄWeyl.

Remark 2. The speciˇc form of Eq. (29) shows that the result is not accidental: the states
are Majorana. The inclusion of the charge conjugation operator C, due to the symmetry of
the physical scenario, enforces the Majorana condition over the state solution.

3. QUANTUM HALL EFFECT AND THE ©IN-PLANEª MAGNETIC FIELD

We can expect that if the plane where the charges are moving is ˇnite, an ©in-planeª
current transversal to the magnetic ˇeld B must appear (e.g., in the x⊥ direction). This
current will be quantized due to the condition (27). This condition explicitly can be written as

φ · σB = (Φσz)x̃⊥

[
ln
∣∣∣∣x⊥

l0

∣∣∣∣− 1
]

= nπ, n = 0, 1, 2 . . . , (32)

where x̃⊥ = σ⊥x⊥ is a new matrix valuated coordinate whose meaning will be analyzed later.
The explicit formula for the Hall current comes from the expression for the surface current

n × B = Ksurface (33)

(n: versor normal to the interface surface). This current is obviously perpendicular to the
magnetic ˇeld ©in planeª (e.g., x⊥ direction). Due to the quantization condition, the Hall
current is also quantized leading to the Quantum Hall Effect (QHE):

Φ
x⊥

v
x⊥ =

2πN�c

ex⊥

v
x⊥ = Ksurface, (34)

where
v
x⊥ is a unitary vector in the x⊥ direction.
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Generalized Momentum Operator and Majorana Conditions. We can elucidate the
interpretation of the nonstandard Dirac equation:

[σB∂B + σ⊥(∂⊥ − ieA⊥) − ieσzAz]ϕ = 0 (35)

by rewritting it as[
σB(∂B − ieσBσzAz)︸ ︷︷ ︸

˜ΠB

+ σ⊥(∂⊥ − ieA⊥)︸ ︷︷ ︸
Π⊥

]
ϕ = 0 ⇒

[
σBΠ̃B + σ⊥Π⊥

]
ϕ = 0. (36)

The question that immediately arises from (36) is then: what is the operator Π̃B? The answer
is obvious if we use the algebra (14) and the deˇnition of the charge conjugation operator as
a function of the sigma matrices. Consequently,

(∂B − ieσBσzAz) = (∂B + ieCAz). (37)

Remark 3. As in ordinary non-Abelian gauge theories, the operator Π̃B in (37) seems to
be equipped with a non-Abelian vector potential ÃB ≡ −CAz.

4. DIRACÄMAJORANA OSCILLATOR:
SUSY, ALGEBRA AND PARASTATISTICS

A relativistic fermion under the action of a linear vector potential is usually called the
Dirac oscillator [7]. The standard Dirac oscillator can be exactly solved in one, two and
three dimensions. It has in the nonrelativistic limit the associated KleinÄGordon equations
describing a harmonic oscillator in the presence of a strong spin-orbit coupling, and the
ˇrst experimental realization of this system has been reported recently [8]. Motivated by
these important reasons plus the possibility to analyze the (super) symmetries in the obtained
spectrum, our goal in this section is to rewrite conveniently the Dirac equation corresponding
to the ©in-planeª magnetic ˇeld conˇguration in the form of the Dirac oscillator.

Our starting point is as follows: in 2 dimensions we have

[cσ⊥p⊥ + eBσzX⊥ + mc2]ϕ = Eϕ ≡ H2Dϕ. (38)

Introducing the corresponding creation and annihilation operators as

H2D = i

(
eBc�

2

)1/2

σ⊥(a+ − a) +
(

eBc�

2

)1/2

σz(a+ + a) + mc2, (39)

we can redeˇne and rearrange the operators in order to put the Hamiltonian in the simpler
form:

H2D =
i√
2
[a+(σ⊥ − iσz) − a(σ⊥ + iσz)] + μ, (40)
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where the energy is given in (eBc�)1/2 units and we have deˇned μ = mc

√
c

eB�
. Explicitly

H2D = H2D =

⎛⎜⎜⎜⎝
(a+ + a)√

2
+ (μ − E)

(a+ − a)√
2

e−iω

(a+ − a)√
2

e+iω − (a+ + a)√
2

+ (μ − E)

⎞⎟⎟⎟⎠ϕ = 0. (41)

The ˇrst important observation is that the Hamiltonian (41) has the suggestive fashion of
the BHZ phenomenological model [7]. This BHZ model was a ©by-handª attempt to explain
the topological insulator mechanism. Then we are able to bring a natural explanation to the
topological insulators described in [7] from a pure phenomenological viewpoint. Expanding
the state ϕ in the n basis and taking into account that it must be invariant under iC(≡ −σ2),
we obtain the following expression:

ϕ =
(

1
eiπ/2

) ∞∑
k=0

[A2k|2k〉 + A2k+1|2k + 1〉]. (42)

However, the coefˇcients An are not independent. A2k and A2k+1 are related to the two ˇrst
coefˇcients A0 and A1 corresponding to the states |0〉 and |1〉, respectively, provided again
that the following quantization condition over the ω necessarily arises:

ω = π(k + 1), k = 0, 1, 2 . . . (43)

Consequently, the normalized state solution takes the following form:

|ϕ〉 =
(

1
eiπ/2

) ∞∑
k=0

⎡⎢⎢⎢⎢⎣A0

√
(2k − 1)!!

e1/4

|2k〉√
2k!︸ ︷︷ ︸

|Ψ1/4〉

+ A1

√
(2k)!!

(
√

eπ/2Erf(1/2))1/2

|2k + 1〉√
(2k + 1)!︸ ︷︷ ︸

|Ψ3/4〉

⎤⎥⎥⎥⎥⎦ ≡

≡
(

1
eiπ/2

)
(A0|Ψ1/4〉 + A1|Ψ3/4〉) (44)

(A2
1, A2

0 = ±1). As is easily seen, |ϕ〉 is a coherent state of KlauderÄPerelomov/BarutÄ
Girardello type. It can be generated by a displacement operator D and under normalization,
it is eigenstate of the annihilation operator a. The coefˇcients A0 and A1 are arbitrary, in
principle, with the property A2

1, A2
0 = ±1. This fact permits us to have two eigenstates of the

annihilation operator a with different parity behaviour under such an operator: A0 = ±A1 →
|ϕ±〉 = A0

(
1

eiπ/2

)
(|Ψ1/4〉 ± |Ψ3/4〉), then

a|ϕ±〉 = ±|ϕ〉. (45)

Remark 4. Notice the important fact that the states solution |ϕ〉 is independent of the
energy. It is a characteristic of the Majorana states that commonly appear in quantum
transport in nanostructures.
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Relation with Supersymmetric Models. The dynamics of the |Ψ〉 ˇelds were extensively
studied in supersymmetric models. In previous references [5], it was demonstrated that the
analysis of the particular representation that we are interested in can be simpliˇed considering
these ˇelds as coherent states in the sense that they are eigenstates of a2 [5]:

|Ψ1/4(0, ξ, q)〉 =
+∞∑
k=0

f2k(0, ξ)|2k〉 =
+∞∑
k=0

f2k(0, ξ)
(a†)2k√

(2k)!
|0〉,

|Ψ3/4(0, ξ, q)〉 =
+∞∑
k=0

f2k+1(0, ξ)|2k + 1〉 =
+∞∑
k=0

f2k+1(0, ξ)
(a†)2k+1√
(2k + 1)!

|0〉.

(46)

From a technical point of view, these states are one-mode squeezed states constructed by the
action of the generators of the SU(1, 1) group over the vacuum. For simplicity, we will take
all normalization and fermionic dependence into the functions f(ξ). Explicitly (supposing in
principle no time dependence, e.g., t = 0),

|Ψ1/4(0, ξ, q)〉 = f(ξ)|α+〉,

|Ψ3/4(0, ξ, q)〉 = f(ξ)|α−〉,
(47)

where |α±〉 are the CS basic states in the subspaces λ = 1/4 and λ = 3/4 of the full
Hilbert space [5]. In the case of the physical state spanning the full Hilbert space, the
HeisenbergÄWeyl (HW) realization for the states Ψ must be used:

|ϕ〉 =
f(ξ)

2
(|α+〉 + |α−〉) = f(ξ)|α〉. (48)

In (48) the linear combination of the states |α+〉 and |α−〉 corresponding to the λ = 1/2 CS
basis spans now the full Hilbert space (dense). As we will see in a future paper, this particular
representation describes perfectly the Majorana fermion behaviour that is phenomenologically
obtained [9].

5. CONCLUDING REMARKS

In this article we have shown how mathematics can predict physical effects and describe
various phenomena with great precision and reliability. Through this letter we have given
examples accompanied with new results using as the physical scenario to describe the quan-
tum transport of charged particles a two-dimensional space with a parallel magnetic ˇeld.
With the consistent mathematical description of the problem, quantum effects that have been
inconsistently explained through empirical/phenomenological methods (©by handª) are now
easily explained as the quantum Hall effect and the rise of Majorana states in low-dimensional
structures with particular ˇeld conditions.

Acknowledgements. I am very grateful to the CONICET-Argentina and BLTP-JINR Di-
rectorate for their hospitality and ˇnancial support where part of this work was made.
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