# ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

# СПОНТАННОЕ ДЕЛЕНИЕ <sup>256</sup>Rf — НОВЫЕ ДАННЫЕ

А. И. Свирихин<sup>а, 1</sup>, А. В. Ерёмин<sup>а</sup>, И. Н. Изосимов<sup>а</sup>, А. В. Исаев<sup>а</sup>, А. Н. Кузнецов<sup>а</sup>, О. Н. Малышев<sup>а</sup>, А. Г. Попеко<sup>а</sup>, Ю. А. Попов<sup>а</sup>, Е. А. Сокол<sup>а</sup>, М. Л. Челноков<sup>а</sup>, В. И. Чепигин<sup>а</sup>, Б. Андел<sup>б</sup>, М. З. Асфари<sup>в</sup>, Б. Галл<sup>в</sup>, Н. Йошихиро<sup>2</sup>, З. Каланинова<sup>б</sup>, С. Мулинс<sup>д</sup>, Ж. Пио<sup>е</sup>, Е. Стефанова<sup>ж</sup>, Д. Тонев<sup>ж</sup> <sup>а</sup> Объединенный институт ядерных исследований, Дубна <sup>б</sup>Университет им. Я. Коменского, Братислава <sup>в</sup> IPHC, IN2P3-CNRS, Страсбург, Франция <sup>с</sup> Университет Кушу, Фукуока, Япония

<sup>е</sup> GANIL, Кан, Франция <sup>\*</sup> ИЯИЯЭ, София

Описывается эксперимент по изучению свойств спонтанного деления короткоживущего нейтронодефицитного ядра  $^{256}$  Rf, получаемого в реакции полного слияния на пучке многозарядных ионов  $^{50}$  Ti ускорителя У-400 ЛЯР. Для изотопа  $^{256}$  Rf измерены период полураспада и вероятность распада через спонтанное деление. Впервые измерялось среднее число нейтронов на одно спонтанное деление  $^{256}$  Rf ( $\bar{\nu}=4,47\pm0,09$ ).

The neutron-deficient isotope  $^{256}\text{Rf}$ , produced in the complete fusion reaction with the  $^{50}\text{Ti}$  heavy ions from U-400 cyclotron, was investigated. The half-life and decay branching ratio of  $^{256}\text{Rf}$  are measured. The average number of neutrons per spontaneous fission of  $^{256}\text{Rf}$  ( $\bar{\nu}=4.47\pm0.09$ ) is determined for the first time.

PACS: 23.70.+j; 25.70.Jj; 25.85.Ca; 27.90.+b

### введение

Настоящая работа продолжает цикл экспериментов по изучению характеристик спонтанного деления ядер, лежащих в экзотической области короткоживущих нейтронодефицитных изотопов с  $Z \ge 100$ . Ранее, в реакциях с тяжелыми ионами (<sup>48</sup>Ca, <sup>40</sup>Ar) нами были синтезированы короткоживущие нейтронодефицитные изотопы <sup>252</sup>No ( $T_{1/2} = 2,3$  с) [1,2], <sup>244</sup>Fm ( $T_{1/2} = 3$  мс) [2] и <sup>246</sup>Fm ( $T_{1/2} = 1,1$  с) [3], определены периоды их полураспада, полные кинетические энергии (TKE, total kinetic energy) осколков спонтанного деления и вероятности распада через спонтанное деление ( $b_{\rm SF}$ , branching ratio).

<sup>&</sup>lt;sup>1</sup>E-mail: asvirikhin@jinr.ru

### 760 Свирихин А.И. и др.

Кроме того, были получены новые данные по такой важной составляющей процесса спонтанного деления, как испарение мгновенных нейтронов. Изучение нейтронных выходов спонтанного деления имеет большое значение как с теоретической, так и с методической точки зрения. Для теории деления ядер важен тот факт, что число мгновенных нейтронов, испускаемых в процессе деления, непосредственно зависит от степени возбуждения осколков деления и, таким образом, играет важную роль в восстановлении энергетического баланса реакции. С другой стороны, получение и накопление информации о множественности мгновенных нейтронов деления тяжелых и сверхтяжелых ядер важно при постановке экспериментов по синтезу и идентификации спонтанно делящихся изотопов трансфермиевых элементов.

# ОПИСАНИЕ ЭКСПЕРИМЕНТА

Мишень <sup>208</sup>PbS (толщиной 0,36 мг/см<sup>2</sup>) облучалась пучком многозарядных ионов <sup>50</sup>Ti с энергией 237 МэВ. Отделение искомых ядер <sup>256</sup>Rf от продуктов побочных реакций осуществлялось кинематическим сепаратором (фильтром скоростей) SHELS [4, 5], являющимся результатом глубокой модернизации электростатического сепаратора ВАСИЛИСА [6]. После сепарации ядра <sup>256</sup>Rf пролетают через времяпролетный детектор и имплантируются в фокальный двусторонний многостриповый кремниевый детектор (DSSSD, 48 × 48 стрипов). Здесь происходит регистрация исследуемых ядер, а также испускаемых ими  $\alpha$ -частиц и осколков спонтанного деления. Вокруг полупроводникового фокального детектора смонтирована сборка из 54 <sup>3</sup>He-счетчиков нейтронов в замедлителе [1]. Сепаратор SHELS позволяет проводить эксперименты по изучению свойств короткоживущих изотопов с периодом полураспада в несколько микросекунд (> 2–3 мкс), что определяется временем пролета исследуемых ядер через сепаратор.

Энергетическое разрешение для  $\alpha$ -частиц в диапазоне 6–10 МэВ, которое было измерено в первых экспериментах на модернизированном сепараторе [4], составляет величину порядка 20 кэВ. Позиционное разрешение фокального детектора — 1 мм (по горизонтали и вертикали). Четыре детектора, смонтированные по бокам фокального детектора и образующие сборку в виде колодца, предназначены для регистрации  $\alpha$ -частиц и осколков спонтанного деления, вылетающих из фокального детектора. Геометрическая эффективность регистрации составляет величину порядка 70 % от  $4\pi$ . Эффективность нейтронного детектора, измеренная при помощи источника <sup>248</sup>Cm, составила ( $45\pm1$ ) % для единичных нейтронов.

# РЕЗУЛЬТАТЫ

За время эксперимента в фокальной плоскости сепаратора было зарегистрировано около 1500 делений, которые можно отнести к распаду ядра <sup>256</sup>Rf. Измеренный период полураспада составил величину ( $5,75 \pm 0,17$ ) мс, что хорошо согласуется с ранее опубликованными результатами [7]. При обработке данных не удалось обнаружить ни одного  $\alpha$ -распада, соответствующего распаду <sup>256</sup>Rf, таким образом, вероятность спонтанного деления для этого изотопа близка к 100 %, что подтверждается литературными данными [7]. Среднее число нейтронов на один акт спонтанного деления <sup>256</sup>Rf измерялось впервые и составило  $\bar{\nu} = 4,47 \pm 0,09$ . Кроме того, для ядра <sup>256</sup>Rf была оценена полная кинетическая энергия осколков, эта величина составила приблизительно 220 МэВ (рис. 1). Это

Спонтанное деление  $^{256}$ Rf — новые данные 761



Рис. 1. Спектр полной кинетической энергии осколков деления <sup>256</sup>Rf

значение определялось сложением амплитуд сигналов в фокальном и боковых детекторах. Калибровка тракта осколков проводилась с использованием известного спектра TKE изотопа  $^{252}$ No, синтезированного в реакции полного слияния  $^{48}$ Ca ( $^{206}$ Pb, 2n)  $^{252}$ No [1].

# ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Имеющиеся экспериментальные данные о величине среднего числа нейтронов на деление  $\bar{\nu}$ , полученные для спонтанного деления изотопов от Pu до Db, составляют систематики зависимости  $\bar{\nu}$  от атомной массы и от кулоновского параметра (рис. 2). Здесь наблюдается заметное увеличение с ростом массы делящегося ядра при фиксирован-



Рис. 2. Систематика среднего числа нейтронов спонтанного деления  $\bar{\nu}$  (кружки) в зависимости от A. Ромбы — результаты, полученные на сепараторах ВАСИЛИСА-SHELS [1–3] и в настоящей работе

762 Свирихин А.И. и др.

ном Z. Оно начинается при A > 242 и наиболее явно выражено для изотопов Cm и Cf, для которых увеличение является практически линейным, и продолжается вплоть до A = 254. Полученное значение среднего числа нейтронов на одно спонтанное деление для  $^{256}$ Rf ( $\bar{\nu} = 4,47 \pm 0,09$ ) оказывается примерно таким, каким и можно было ожидать на основе экстраполяции имевшихся ранее данных. Это означает, что в тех аспектах, которые определяют величину средней энергии возбуждения осколков, спонтанное деление нейтронодефицитного изотопа  $^{256}$ Rf аналогично скорее делению ядер из «асимметричной» области Cm–Cf нежели делению нейтроноизбыточных изотопов с  $Z \ge 100$  и  $N \approx 160$ , где на динамические характеристики деления заметное влияние оказывает «симметричность» распределения осколков по массам [8].

#### ЗАКЛЮЧЕНИЕ

Методика, реализуемая на сепараторе SHELS, позволяет в значимых количествах синтезировать ядра экзотических трансурановых элементов. А с запуском «Фабрики сверхтяжелых элементов» в ЛЯР ОИЯИ, где интенсивность пучков ускоренных тяжелых ионов возрастет в несколько раз, эта методика способна значительно пополнить данные о свойствах спонтанного деления сверхтяжелых изотопов с Z > 100, получаемых в реакциях полного слияния, распадающихся преимущественно путем спонтанного деления и обладающих очень короткими временами жизни.

Работа выполнена при финансовой поддержке РФФИ (гранты 13-02-12003, 14-02-93962 и 14-02-91051).

#### СПИСОК ЛИТЕРАТУРЫ

- Yeremin A. V. et al. Neutron Detector at the Focal Plane of the Set Up VASSILISSA // Nucl. Instr. Meth. A. 2005. V. 539. P. 441–444.
- Svirikhin A. I. et al. The Emission of Prompt Neutrons from the Spontaneous Fission of <sup>252</sup>No and <sup>244</sup>Fm // Eur. Phys. J. A. 2012. V.48. P. 121–127.
- Svirikhin A. I. et al. Neutron Multiplicity at Spontaneous Fission of <sup>246</sup>Fm // Eur. Phys. J. A. 2010. V.44. P. 393–396.
- 4. *Еремин А. В. и др.* Первые экспериментальные тесты модернизированного сепаратора ВАСИ-ЛИСА // Письма в ЭЧАЯ. 2015. Т. 12, № 1(192). С. 63–73.
- 5. *Еремин А. В. и др.* Экспериментальные тесты модернизированного сепаратора ВАСИЛИСА (SHELS) с использованием ускоренных ионов <sup>50</sup>Ti // Письма в ЭЧАЯ. 2015. Т. 12, № 1(192). С. 74–80.
- Yeremin A. V. et al. The Kinematic Separator VASSILISSA Performance and Experimental Results // Nucl. Instr. Meth. A. 1994. V. 350. P. 608–617.
- Heβberger F. P. et al. Spontaneous Fission and Alpha-Decay Properties of Neutron Deficient Isotopes <sup>257-253</sup>104 and <sup>258</sup>106 // Z. Phys. A. 1997. V. 359. P. 415–425.
- Hoffman D. C. Spontaneous Fission Properties and Life-Time Systematic // Nucl. Phys. A. 1989. V. 502. P. 21–40.

Получено 19 января 2016 г.