
�¨¸Ó³  ¢ �—�Ÿ. 2016. ’. 13, º 5(203). ‘. 957Ä961

Š�Œ�œ�’…�	›… ’…•	�‹�ƒˆˆ ‚ ”ˆ‡ˆŠ…

OPTIMIZATION OF OVER-PROVISIONED CLOUDS
N. Balashov a, 1, A. Baranov a, V. Korenkov a, b

a Joint Institute for Nuclear Research, Dubna
b Plekhanov Russian University of Economics, Moscow

The functioning of modern applications in cloud-centers is characterized by a huge variety of
computational workloads generated. This causes uneven workload distribution and as a result leads to
ineffective utilization of cloud-centers' hardware. The proposed article addresses the possible ways to
solve this issue and demonstrates that it is a matter of necessity to optimize cloud-centers' hardware
utilization. As one of the possible ways to solve the problem of the inefˇcient resource utilization
in heterogeneous cloud-environments an algorithm of dynamic re-allocation of virtual resources is
suggested.

PACS: 89.20.Ff

Cloud technologies are rapidly gaining popularity both in commercial and scientiˇc areas.
The reason of this popularity growth is a high 
exibility of the cloud architectures and that it
also reduces the cost of ownership of datacenters built using cloud technologies. Spreading the
cloud computing all over the world led to construction of large-scale datacenters containing
thousands of computing nodes. Many large scientiˇc organizations have already started
deploying their own private cloud environments [1, 2] and transfer to them their information
services and computing.

The Joint Institute for Nuclear Research (JINR) also has a cloud infrastructure deployed
at the Laboratory of Information Technologies (LIT) [3]. It is based on the Infrastructure
as a Service (IaaS) model Å one of three basic cloud service models Å and built on the
open-source cloud-platform OpenNebula. The end-product of the IaaS-based cloud-service
is a Virtual Machine (VM). Basically, the JINR cloud is a cluster of physical servers (also
known as hosts), holding user's virtual machines. When a user requests a VM, the cloud
scheduler picks a server that ˇts the VM's requirements, deploys this virtual machine and
gives the user access to it.

These VMs are used for a variety of different activities, such as development or administra-
tion of information services, and they are also used to perform scientiˇc computations (mostly
physical analysis and modeling). All of these activities generate very different workloads.
The table and Figs. 1 and 2 illustrate the JINR cloud resources utilization.

When user creates a virtual machine, it is really hard to deˇne the precise amount of
resources he would need and in most cases it is an issue hard to resolve and it is just

1E-mail: balashov@jinr.ru



958 Balashov N., Baranov A., Korenkov V.

JINR cloud utilization

Allocated Total Real Allocated Total Real Running
Host Hypervisor CPU, cores CPU, cores CPU, cores memory, memory, memory, VMs

× 100 × 100 × 100 GB GB GB

1 KVM 300 400 181 6 7.7 4.1 2
2 KVM 300 400 0 3 3.7 2.2 2
3 KVM 500 400 207 6.5 7.7 6 4
4 KVM 300 400 103 4 7.7 4.8 3
5 KVM 0 400 0 0 7.7 0 0
6 KVM 500 400 83 5 7.7 3.9 3
7 OVZ 200 200 0 1 3.7 0.8 2
8 OVZ 400 400 6 3.5 3.8 0.6 4
9 OVZ 2500 2400 7 35.5 23.4 10.1 22
10 OVZ 800 400 32 9 7.7 3.3 4
11 OVZ 600 400 1 7 7.7 1.2 6
12 OVZ 400 400 99 6 7.7 2.3 4
13 OVZ 800 400 101 8 7.7 2 4
14 OVZ 1900 1200 103 35 35.2 4.6 4
15 OVZ 1400 1200 751 14 35.2 9.9 4
16 OVZ 1300 1200 15 23.9 35.2 3.8 5
17 OVZ 1100 1200 18 17 35.2 7.1 7
18 OVZ 400 400 0 6.5 7.7 1.2 4

Total: 13700 12200 1617 190.9 252.4 67.9 84

unreasonable to spend much time on solving it, so the most popular strategy to decide on the
amount of required resources is ©as much as possibleª strategy. This strategy inevitably leads
to a high degree of underutilization of computing resources and together with the variety of
workloads, produced by the VMs, leads to uneven workload distribution. Figures 1 and 2
illustrate a resource consumption by each host in the JINR cloud.

We see that there are 84 active VMs running and 131 computing cores with around
184 GB of RAM allocated for them. The real usage is much less than allocated: CPU
utilization sums up to around 20 cores and only around 60 GB of memory is utilized or only
11.8% of allocated CPU and 35.5% of allocated memory is really utilized overall. So, the
reasonable and obvious question is: can we somehow optimize this?

Fig. 1. CPU utilization



Optimization of Over-Provisioned Clouds 959

Fig. 2. Memory utilization

A standard way is to overcommit. Basically, it is when we allocate more virtual resources
than we actually have, but due to low utilization it keeps working.

As an example, we have only 12 cores on host 14 in the table, but we allocate 19 cores
and the overall performance does not degrade because the summarized workload over all VMs
on this host equals nearly one core or around 10%. We have no memory overcommitment
here. In case of host 10 we overcommit even more CPUs and slightly memory Å we try to
not overcommit memory much, because in case of memory overload it may start swapping
which leads to the signiˇcant degradation of performance for all of the VMs on a server.
Again what we see here is that the real utilization gets even less with a higher degree of
overcommitment than on host 14.

The obvious beneˇt of overcommitment is a better hardware utilization. However, appar-
ently the more we overcommit, the less reliable gets the service and the quality of service
degrades. One more issue with overcommitment in our cloud is that built-in OpenNebula
scheduler is not capable of managing overcommitment, so it should be done manually by a
system administrator. Doing it manually can be a very time-consuming operation, since we
do not want to overload the infrastructure and have to pick a less provisioned host.

To address all of these issues, we decided to implement a custom scheduler, which
would automatically deal with overcommitment and also dynamically optimize VM-placement
depending on the current workload.

There are some developments of schedulers that allow one to re-allocate VMs dynamically
and are able to manage overcommitment, for example, OpenStack Neat [4] for OpenStack
platform and Snooze [5] for OpenNebula. However, these systems are aimed at optimizing
the energy consumption more than on optimizing the performance of the datacenter, while the
scheduler proposed in this paper is aimed at increasing the hardware utilization efˇciency with
a minimal quality of service degradation based on historical performance metrics gathered
from each of the VMs.

Our scheduler relies on the method of dynamic VM re-allocation described below.
First, we give each server some rank with the maximum rank being the best and zero-rank

being the worst. In case of a heterogeneous environment like ours at JINR, where we have
different servers in terms of hardware, we can use server parameters like number of cores and



960 Balashov N., Baranov A., Korenkov V.

amount of memory to rank them. In homogeneous clouds with similar servers we can rank
them randomly. The goal is to form logical levels based on ranks and we can have several
servers on the same level.

Then each VM also gets some rank, but these ranks would change in time, unlike server
ranks, and each VM-rank corresponds to particular host-rank.

As you can see in Fig. 3, when user creates a VM, it gets the highest rank and is deployed
on the host with the maximum rank. Then the scheduler starts analyzing VM's usage and
if it does not show any signiˇcant workload for some period of time, its rank is decreased
and it gets live-migrated to the host with the lower rank. If, instead, the usage grows, the
VM's rank increases and, again, it gets migrated to the higher-rank host. Finally, we have
low-loaded VMs stacked up on the low-rank hosts releasing higher-rank servers for VMs with
higher resource utilization. The lower the rank the host has, the more stacked it gets, and
consequently less reliable.

The development of the scheduler is split up into four phases:
1) implementing and deploying system that would gather VMs performance-metrics;
2) development of interactive cloud model based on metrics gathered on the previous stage;
3) implementation of algorithms for dynamic re-allocation of VMs and testing them on

the interactive model;
4) deploying scheduler on the production infrastructure.
The most crucial activities are:
• deˇning hosts and VMs ranking criteria;
• deˇning live-migration possibility;
• deˇning safe VM consolidation thresholds.
The proposed approach is an attempt to solve problems of the inefˇcient usage of the cloud

environment resources by re-allocating them between virtual machines using the accumulated
historical metrics of their utilization.

This work was supported by the RFBR, grant 15-29-07027.

Fig. 3. Dynamic VMs re-allocation method



Optimization of Over-Provisioned Clouds 961

REFERENCES

1. Meinhard H. Virtualization, Clouds and IaaS at CERN // Proc. of the 6th Intern. Workshop on
Virtualization Technologies in Distributed Computing, VTDC'12. ACM New York, NY, USA,
2012. P. 27Ä28.

2. Hao Wu et al. Automatic Cloud Bursting under FermiCloud // Proc. of the Intern. Conf. on Parallel
and Distributed Systems (ICPADS). 2013. P. 681Ä686.

3. Baranov A. V. et al. Cloud Infrastructure at JINR // Comp. Res. Modeling. 2015. V. 7, No. 3. P. 463Ä
467.

4. Beloglazov A., Buyya R. OpenStack Neat: A Framework for Dynamic and Energy-Efˇcient Con-
solidation of Virtual Machines in OpenStack Clouds // Concurrency and Computation: Practice and
Experience (CCPE). V. 27, No. 5. P. 1310Ä1333.

5. Feller E., Rilling L., Morin C. Snooze: A Scalable and Autonomic Virtual Machine Management
Framework for Private Clouds // Proc. of the 12th IEEE/ACM Intern. Symp. on Cluster, Cloud and

Grid Computing (CCGrid). 2012. P. 482Ä489.


