ИСТОЧНИК ЖЕСТКИХ АНТИНЕЙТРИНО НА ОСНОВЕ ЛИТИЕВОГО БЛАНКЕТА. ВАРИАНТ ДЛЯ МИШЕНИ УСКОРИТЕЛЯ

В. И. Ляшук¹

Институт ядерных исследований РАН, Москва Национальный исследовательский центр «Курчатовский институт», Москва

 β^- -активный изотоп ⁸Li обладает жестким и хорошо определенным антинейтринным спектром ($E_{\nu}^{\max} = 13,0 \text{ МэB}$, $\overline{E_{\nu}} = 6,5 \text{ МэB}$), обеспечивающим надежную регистрацию пороговых реакций: ($\tilde{\nu}_e$, p) и ($\tilde{\nu}_e$, d). Предлагается интенсивный $\tilde{\nu}_e$ -источник в схеме тандема ускорителя с нейтронно-производящей мишенью и литиевым бланкетом. Результаты анализа плотности рождения ⁸Li в обсуждаемом бланкете позволяют сократить массу высокочистого ⁷Li до 100–200 кг в сравнении с ~ 19,5 т в варианте с металлическим ⁷Li и уменьшить размер источника в ~ 2,5 раза, что важно для предлагаемых экспериментов по поиску стерильных нейтрино на короткой базе.

 β^- -active ⁸Li isotope is characterized by hard and well defined antineutrino spectrum $(E_{\nu}^{\max} = 13.0 \text{ MeV}, \overline{E_{\nu}} = 6.5 \text{ MeV})$, that ensures reliable registration of threshold reactions: $(\tilde{\nu}_e, p)$ and $(\tilde{\nu}_e, d)$. An intensive $\tilde{\nu}_e$ -source for the scheme of accelerator, neutron-producing target and lithium blanket is proposed. The results of density analysis for ⁸Li creation in the discussed blanket allows one to reduce the mass of high purity ⁷Li up to 100–200 kg in comparison with ~ 19.5 t for metal lithium and to decrease the source size ~ 2.5 times that is important for proposed experiments on search of sterile neutrinos at the short base.

PACS: 95.85.Ry; 29.25.Dz; 52.59.-f; 29.25.Rm; 28.60.+s

ВВЕДЕНИЕ. ТРЕБОВАНИЯ К АНТИНЕЙТРИННОМУ ИСТОЧНИКУ

Поиск стерильных нейтрино — одно из наиболее интенсивно разрабатываемых направлений в физике частиц. По вопросу о возможном масштабе величины Δm^2 (между стерильными и активными нейтрино) существует большой разброс оценок: от ~ 1 до 100 эВ² и значительно выше [1–3]. Однако к значению $\Delta m^2 \sim 1$ эВ², полученному при подгонке результатов ряда осцилляционных экспериментов с выявленными аномалиями, приковано внимание многих исследователей [1]. В упрощенной модели нейтринных осцилляций с двумя типами нейтрино максимальный переход между двумя ароматами достигается на расстояниях от источника, кратных длине осцилляции:

$$L_{\mathrm{osc}}\left[\mathbf{M}\right] \approx rac{2,48 \, E \left[\mathbf{M}
ightarrow \mathbf{B}\right]}{\Delta m^2 \left[
ightarrow \mathbf{B}^2 \right]}.$$

¹E-mail: lyashuk@itep.ru

268 Ляшук В. И.

В вариантах расширения стандартной модели рассматриваются схемы (3 + 1), (3 + 2) и (3 + 3) с одним, двумя и тремя стерильными нейтрино соответственно [1, 4-6]. Если Δm_{41}^2 — максимальная разность квадратов масс стерильного и активного нейтрино $(|\Delta m_{21}^2| \ll |\Delta m_{31}^2| \ll |\Delta m_{41}^2|)$ порядка 1 эВ², то длина осцилляций с участием стерильных нейтрино в схеме (3 + 1) получается из модели с двумя ароматами. Для жесткого антинейтринного спектра от β^- -распада ⁸Li ($\overline{E_{\nu}} = 6,5$ МэВ, см. рис. 1 [7]) и оценок работы [1] средняя длина осцилляции составит 7,3 м [8]. Для схемы (3 + 2) с тремя активными и двумя стерильными нейтрино и данными [1] длина осцилляции принципиально не меняется — 10,6 м [8]. Ясно, что для исследования осцилляций в экспериментах с короткой базой необходимы интенсивные нейтринные источники низкой энергии — в МэВ-м диапазоне. Указанным требованиям полностью соответствует источник на основе лития.

Наиболее интенсивным антинейтринным источником в МэВ-м диапазоне энергий является ядерный реактор, антинейтринный спектр которого формируется при β^- -распаде ядер-фрагментов деления. Фактически полный $\tilde{\nu}_e$ -поток от реактора (99,8 % для реакторов типа ВВЭР) обеспечивается четырьмя изотопами — ²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu [9]. Одна из проблем суммарного спектра связана с зависимостью парциальных вкладов от состава ядерного топлива, сильно меняющегося в течение кампании и при остановках реактора. Изотоп ²³⁵U выгорает (его доля в топливе падает с ~ 73 до ~ 46 %), а парциальный вклад ²³⁹Pu, ²³⁸U, ²⁴¹Pu растет [9]. Изменение в топливном составе ведет к вариации $\tilde{\nu}_e$ -потока, который пересчитывается с помощью корректирующих коэффициентов. Все четыре $\tilde{\nu}_e$ -спектра быстро спадают с ростом энергии. Так, для ²³⁵U при росте энергии с 2 до 6,5 МэВ и 9 МэВ нейтринный спектр упадет в 64 и 23000 раз. Для сравнения: $\tilde{\nu}_e$ -спектр ⁸Li при увеличении энергии от средней (6,5 МэВ) до 9 МэВ снизится только в 1,36 раза (рис. 1).

Такое резкое падение антинейтринного спектра от ядерного реактора сильно снижает вероятность регистрации антинейтрино даже с учетом квадратичной зависимости сечения взаимодействия от энергии — $\sigma \sim E_{\nu}^2$. Проблема осложняется тем, что регистрируемые

Рис. 1. Антинейтринный спектр ²³⁵U и ⁸Li (левая вертикальная ось) и зависимость сечения ($\tilde{\nu}_e, d$)-реакции в (n, p)-нейтральном и (n, n)-заряженном каналах (правая ось)

реакции на протоне и дейтроне являются пороговыми:

 $\tilde{\nu}_e + p \rightarrow n + e^+$ (*E*_{threshold} = 1,8 M₃B);

 $\tilde{\nu}_e + d \rightarrow n + p + \tilde{\nu}_e$ (нейтральный канал, $E_{\rm threshold} = 2{,}53$ МэВ);

 $\tilde{\nu}_e + d \rightarrow n + n + e^+$ (заряженный канал, $E_{\rm threshold} = 4,0$ МэВ).

Проблемы, возникающие при работе на таком резко спадающем спектре (с учетом малости сечений данных реакций и их порогового характера), очевидны. Рис. 1 иллюстрирует «минусы» реакторного спектра для целей регистрации ($\tilde{\nu}_e, d$)-реакции в (n, p)нейтральном и (n, n)-заряженном каналах [10]. Такие «минусы» исключены при работе на жестком литиевом спектре.

Суммарный нейтринный поток от реактора определяется нормировкой текущей тепловой мощности на $E_f(t)$ — среднюю энергию, выделяемую в одном акте деления. Однако в течение кампании реактора с изменением состава топлива меняется и средняя выделяемая энергия E_f : это значение возрастает на 1,5 % [11]. Считается, что для энергетических реакторов на легкой воде текущая мощность может быть оценена с точностью 2 % [12]. Пересчет антинейтринного потока по оценке выделяемой тепловой мощности — это еще один постоянный источник ошибок при работе на реакторном спектре.

Дополнительные систематические (и неучтенные в осцилляционном эксперименте) ошибки в оценке $\tilde{\nu}_e$ -потока возникают во время остановки реактора из-за постоянного наличия на реакторе отработанного топлива. Эти ошибки могут дать вклад до 1 % [13].

Экспериментальные $\tilde{\nu}_e$ -спектры при β^- -распаде ядер-фрагментов от деления (²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu) восстанавливаются из этих β^- -спектров. Прямая регистрация β^- спектров по электронам возможна только для части цепочек распадов: другие цепочки

Рис. 2. Зависимость ошибок определения антинейтринных спектров от энергии для реакторных топливных изотопов ²³⁵U, ²³⁹Pu и ²⁴¹Pu. Сплошные линии — экспериментальные результаты, штриховые — расчет

идентифицируются по γ -квантам. В случае больших ветвлений восстановление вероятностей каналов, неизвестных схем распадов и конечных продуктов становится проблематичным [14–16].

Ошибки в реакторном $\tilde{\nu}_e$ -спектре значительно растут, начиная с энергии около 6 МэВ. Для более высоких энергий ситуация выглядит драматичной. Так, ошибки возрастают до: 56 % при 9,5 МэВ для ²³⁵U; 90 % при 9,0 МэВ для ²⁴¹Pu; 80 % при 8,5 МэВ для ²³⁹Pu; 30 % при 7,5 МэВ для ²³⁸U [17–19].

Зависимость величины ошибок определения $\tilde{\nu}_e$ -спектра по экспериментальным данным и модельным расчетам для ²³⁵U, ²³⁹Pu и ²⁴¹Pu показана на рис. 2 [14, 17, 18, 20]. Здесь наиболее значительные отклонения (начиная с 4 %) модельных результатов от экспериментальных данных возникают для ²³⁹Pu.

В результате значительные неточности и неучтенные добавки в суммарном $\tilde{\nu}_e$ -спектре (до 6 % по суммарному потоку, см. работы [13–16]) создают исключительные сложности в интерпретации нейтринных осцилляционных экспериментов. Постановка экспериментов на хорошо определенном литиевом $\tilde{\nu}_e$ -спектре позволит избежать данных ошибок.

В работе [21] указано на возможность создания интенсивного нейтринного источника в МэВ-м диапазоне энергий при конверсии нейтронов в антинейтрино ¹¹В (n, γ) ¹²В в условиях импульсной термоядерной реакции, инициированной лазером во взрывной камере радиусом 5–7 м с соответствующей защитой и системой ввода пучка в мишень в виде сферы. Но наличие в природном боре изотопа ¹⁰В (сильного поглотителя нейтронов) обусловливает необходимость снизить его концентрацию до $(1-3) \cdot 10^{-6}$, что крайне сложно технологически.

ЛИТИЕВЫЙ $\tilde{\nu}_e$ -ИСТОЧНИК В УСКОРИТЕЛЬНОМ ВАРИАНТЕ. ОПТИМИЗАЦИЯ ПО МАССЕ И РАЗМЕРАМ

Физическая схема литиевого $\tilde{\nu}_e$ -источника сводится к нейтронной активации изотопа ⁷Li. Образующийся ⁸Li является нейтронно-избыточным и претерпевает быстрый β^- -распад ($T_{1/2} = 0.84$ с) с испусканием антинейтрино с энергией до ~ 13 МэВ. Идея использования ⁷Li для создания нейтринного источника была высказана Л. В. Микаэляном, П. Е. Спиваком и В. Г. Циноевым [22].

Наиболее простой путь создания литиевого источника состоит в размещении значительной массы лития вблизи интенсивного нейтронного источника. Жесткие требования возникают к изотопной чистоте лития. Природный литий состоит из двух стабильных изотопов — ⁷Li (92,5%) и ⁶Li (7,5%). Изотоп ⁶Li обладает большим сечением захвата нейтронов: так, в тепловой точке, $\sigma_a^{\text{thermal}}(^6\text{Li}) \approx 937$ б, захват идет, в основном, с образованием трития в реакции ⁶Li (n, α) T, а «полезная» реакция ⁷Li (n, γ) ⁸Li имеет сечение $\sigma_{n\gamma}^{\text{thermal}} = 0,045$ б, что меньше, чем на четыре порядка.

В работах [23–25] проанализированы функционалы нейтронных полей и плотности замедления в тепловую группу (что критически важно для обеспечения максимального образования ⁸Li) и изучены основные геометрии размещения литиевого бланкета (конвертора) вблизи активной зоны реактора. Было показано, что для обеспечения высокого выхода ⁸Li примесь изотопа ⁶Li должна быть ~ 0,0001, а необходимая толщина бланкета ~ 150–170 см. Литий с такой чистотой постоянно производится (в основном, в России и Китае) и используется как теплоноситель и для химических добавок при обслуживании энергетических легководных реакторов [26, 27]. Необходимая для бланкета масса лития

может быть полностью обеспечена российскими и зарубежными специализированными предприятиями (см., например, [28, 29]).

Возможен принципиально иной подход к созданию литиевого $\tilde{\nu}_e$ -источника: в работе [30] для (n, γ) -активации лития предложено использовать ускоритель с нейтроно-производящей мишенью, окруженной литиевым бланкетом. Материалы, используемые для мишеней, — свинец, тантал, вольфрам, висмут, уран, ртуть и бериллий (как отражатель и размножитель нейтронов). Большое преимущество нейтронно-производящих мишеней обусловлено тем, что нейтронный выход Y_n (нейтрон/протон) растет с увеличением энергии протонов: так, при энергии $E_p = 300$ МэВ выход нейтронов $Y_n \approx 3-4$, для $E_p = 500-600$ МэВ выход возрастает до $Y_n \approx 10$ [31].

Но и для ускорительного варианта $\tilde{\nu}_e$ -источника на основе лития также остается проблема обеспечения значительной массы высокочистого ⁷Li. Был рассмотрен [32] литиевый бланкет (в цилиндрической геометрии с толщиной слоя 1,7 м и длиной 3,4 м) с вольфрамовой мишенью в центре. Для заполнения такого бланкета потребуется 19,5 т металлического ⁷Li.

Радикальное решение проблемы большой массы высокочистого лития состоит в использовании тяжеловодных растворов ⁷LiOD. В работе [33] предложено использование ряда дейтерированных соединений изотопа ⁷Li. Моделирование продемонстрировало, что использование рассмотренных дейтеридов и гидроксидов лития и их растворов обеспечит увеличение выхода k_n изотопа ⁸Li (на нейтрон источника) на порядок и более в сравнении с металлическим литиевым бланкетом при массе ⁷Li до ~ 1000 кг. (см. рис. 3 для сферически-симметричной геометрии и концентрации примеси ⁶Li 0,0001). Для по-

Рис. 3. Зависимость выхода ⁸Li в бланкете (его эффективность k_n) от массы изотопа ⁷Li при использовании различных литиевых соединений и их тяжеловодных растворов (концентрация соединений в растворе указана возле кривых)

лученных зависимостей важно отметить резкий рост выхода при малых массах лития: уже при 100–200 кг достигается 85–92 % от максимального k_n . Такая резкая зависимость k_n при малых массах делает также перспективными проекты $\tilde{\nu}_e$ -источника с массой бланкета до ~ 50 кг. Именно использование тяжеловодного раствора ⁷LiOD (с концентрацией ~ 9,5 %) вместо металлического лития позволяет снизить массу ⁷Li с 19,5 до 1,1 т при высоком выходе ($k_p = 0.363$)⁸Li на протон пучка [32].

Принципиальными составляющими проекта ускорительного варианта литиевого нейтринного источника также являются высокоточный ускоритель (для обеспечения высокого выхода нейтронов в мишени) и $\tilde{\nu}_e$ -детектор. В последние годы предложения по ускорительному варианту $\tilde{\nu}_e$ -источника на основе литиевого бланкета [25, 30] получили развитие в ряде ядерных центров [34, 35]. Для разрешения возникающих задач предлагают создание специализированного протонного ускорителя медицинского типа с энергией 60 МэВ и током 10 мА. Разрабатываемый ускоритель и литиевый источник (на основе бланкета с массой металлического лития ~ 2,7 т) предлагается разместить вблизи детектора KamLAND [34, 35].

Необходимо отметить, что на разработку ускорителей с большим током (~ 10 мА) направлены усилия многих центров с целью решения проблемы трансмутации радиоактивных отходов и создания мощных (на сотни мегаватт) электроядерных установок, управляемых протонным пучком с энергией до ~ 1 ГэВ (см. обзор [36]).

Для оценки возможности применения ускорительного варианта литиевого нейтринного источника для поиска стерильных нейтрино проведено моделирование [8] чувствительности Δm_{41}^2 в зависимости от угла смешивания $\sin^2(2\theta)$ по схеме (3 + 1) с параметрами из работы [1]. Моделирование проведено в схеме: пучок протонов с энергией 200 МэВ и током 1 мА облучает вольфрамовую мишень, установленную в центре литиевого бланкета; центр бланкета удален от границы детектора JUNO [37] на расстояние 9,5 м. Получено, что за пять лет полный $\tilde{\nu}_e$ -поток достигнет $2,1 \cdot 10^{23} \tilde{\nu}_e$ (при временной загруженности ускорителя на 83 %), что обеспечит высокую статистику — $8 \cdot 10^7 (\tilde{\nu}_e, p)$ взаимодействий при эффективности регистрации 0,9. Эксперимент обеспечит исключительно высокую чувствительность по углу смешивания ($\sin^2(2\theta) < 0,001$) в интервале $\Delta m^2 > \approx 0,2$ эВ² на доверительном уровне 95 % [8].

Максимальный $\tilde{\nu}_e$ -поток от искусственного источника (за исключением ядерного взрыва) обеспечивается ядерным реактором. Плотность потока от реактора $[cm^{-2} \cdot c^{-1}]$ с мощностью P[MBT] на расстоянии R[M] равна $F \cong \bar{n}P/4\pi R^2 \bar{E} = 1,5 \cdot 10^{12} P/R^2$, где $\bar{n} \simeq 6,14$; $\bar{E} \simeq 200$ МэВ. При P = 1000 МВт на расстоянии 10 м поток равен $1,5 \cdot 10^{13}$ см⁻² · c⁻¹ в сравнении с $1,3 \cdot 10^8$ см⁻² · c⁻¹ — потоком от литиевого бланкета [8] на таком же удалении. Но для целей поиска стерильных нейтрино с параметром $\Delta m^2 \sim 1$ эВ² при работе на реакторе возникают большие сложности вследствие ошибок определения потоков и спектра нейтрино. Так, вероятности выживания электронного антинейтрино в схеме (3 + 2) с параметрами [1] в зависимости от расстояния L (для короткобазового эксперимента) могут уменьшаться на $\sim 8-11\%$ (рис. 4, *a*). Здесь в расчете учтен $\tilde{\nu}_e$ -спектр активной зоны [14] для регистрации с энергией $E_{\nu} > 3$ МэВ.

Для оценки зависимости вероятности существования $\tilde{\nu}_e$ от энергии дано представление также в функции отношения расстояния к энергии нейтрино L/E (см. рис. 4, δ) [8]. Антинейтринный поток реактора известен с точностью $\sim 6\%$ [13–16]. Текущая мощность реактора на легкой воде известна с точностью 2 % [12]. Таким образом, при работе на реакторном спектре и параметрах [1] осцилляции с участием стерильных нейтрино

Рис. 4. Вероятность существования $\tilde{\nu}_e$ в модели (3+2) [1]: *a*) на расстоянии *L* (от точки рождения) в потоке со спектром активной зоны; δ) в зависимости от отношения *L/E*. Штриховые кривые — $\Delta m_{41}^2 = 0.46$ эВ², $U_{e4} = 0.108$, $\Delta m_{51}^2 = 0.89$ эВ², $U_{e5} = 0.124$; сплошные — $\Delta m_{41}^2 = 0.47$ зВ², $U_{e4} = 0.128$, $\Delta m_{51}^2 = 0.87$ зВ², $U_{e5} = 0.124$; сплошные — $\Delta m_{41}^2 = 0.47$ зВ², $U_{e4} = 0.128$, $\Delta m_{51}^2 = 0.87$ зВ², $U_{e5} = 0.128$;

попадают в область ошибок. Именно поэтому знание $\tilde{\nu}_e$ -спектра ⁸Li и его стабильность являются несомненными преимуществами для осцилляционного эксперимента с применением литиевого бланкета.

Еще одна сложность при работе на реакторном $\tilde{\nu}_e$ -спектре обусловлена неточностью координат источника нейтрино и перераспределением энерговыделения в активной зоне в ходе кампании. На это указано в известной монографии ([38, с. 67]) при обсуждении классических нейтринных экспериментов Ф. Рейнеса (F. Reines) и Ф. А. Незрика (F. A. Nezrik).

Постоянный интерес также вызывает исследование реакции ($\tilde{\nu}_e, d$). И в этом случае крайне важно знать потоки и спектр антинейтрино при $E_{\nu} > 4,0$ МэВ, т.е. в области спектра, хорошо известной для ⁸Li.

Разработка ускорительной концепции литиевого $\tilde{\nu}_e$ -источника требует детального анализа плотности генерации изотопа ⁸Li в бланкете в зависимости от энергии пучка протонов, материала используемой мишени, геометрии мишени и бланкета. В работе [8] рассмотрено образование ⁸Li в бланкете цилиндрической геометрии с оптимизированной вольфрамовой мишенью при энергии пучка $E_p = 200$ МэВ. В расчетах по программе [39] объем бланкета с раствором ⁷LiOD разделен на 105 ячеек в виде цилиндрических слоев (ячейки с номерами 1–100) и 5 ячеек-цилиндров по оси пучка после мишени. Толщина D₂O-слоя — 5 см (рис. 5).

Углубленное положение мишени (в центре бланкета) и оптимизация ее размеров для использования в интервале энергий протонов 50–300 МэВ позволили уменьшить потери нейтронов, рассеиваемых назад во входной канал. Так, при энергии 300 МэВ теряется только 2 % нейтронов, производимых на «голой» мишени. Наиболее интенсивное образование изотопа ⁸Li концентрируется вдоль оси мишени со слабым смещением «назад». Такое распределение плотности рождения ⁸Li происходит за счет быстрого замедления на ядрах дейтерия в тяжеловодном растворе и последующей реакции ⁷Li $(n, \gamma)^8$ Li. На рис. 5 серым цветом выделены группы ячеек, обеспечивающих более высокий выход ⁸Li. Масса лития, соответствующая объемам областей ячеек n1, n2 и n3, составляет 420, 241

Рис. 5. Геометрия литиевого бланкета, тяжеловодного канала, входа протонного пучка и вольфрамовой мишени в центре (сечение по оси пучка в цилиндрической геометрии). На выносном рисунке дан общий вид мишени. Границы 105 ячеек даны штриховыми линиями. Полутонами (n1, n2, n3) выделены области ячеек, соответствующие вкладам в 90, 80 и 68 % от полного выхода ⁸Li в объеме бланкета при энергии протонов 200 МэВ

и 128 кг соответственно. Длина бланкета (вдоль оси пучка) для вариантов n1, n2 и n3 уменьшается в \sim 1,7, 1,7 и 2,5 раза.

Учет такого распределения ядер ⁸Li с концентрацией к оси пучка и к мишени, безусловно, необходим при поиске стерильных нейтрино [8]. Сильно выраженная неравномерность распределения ⁸Li позволяет значительно уменьшить размеры бланкета. При этом должно быть учтено действие тяжелой воды как отражателя в остальных областях бланкета с низким выходом ⁸Li. Уменьшение размеров бланкета позволит в несколько раз сократить массу высокочистого ⁷Li. Безусловно, создание такой установки является затратным. Так, стоимость 1 кг ⁷Li с чистотой 0,9999 составляет от \$10000 [26] до \$15000 [27]. Тем не менее, в ряде ядерных центров уже детально прорабатываются технические предложения по созданию установки на основе ⁷Li [35].

Источник жестких антинейтрино на основе литиевого бланкета 275

Рис. 6. Нормированное распределение выходов ⁸Li в бланкете по выделенным объемным ячейкам при энергии протонов 200 МэВ и вольфрамовой мишени. Сечение цилиндрического бланкета и оси пучка протонов лежат в горизонтальной плоскости. Выходы «справа» от пучка представлены гистограммами, а «слева» — сглажены сплайном

Распределение образования ⁸Li (нормировано на полный выход ⁸Li) в рассмотренной геометрии представлено на рис. 6, где на горизонтальной плоскости непрерывной линией нанесена видимая часть контура сечения бланкета в цилиндрической геометрии из рис. 5. Положение гистограмм на горизонтальной плоскости соответствует номеру ячеек.

ЗАКЛЮЧЕНИЕ

Физическая схема предлагаемого интенсивного $\tilde{\nu}_e$ -источника, основанного на β^- распаде изотопа ⁸Li, включает тандем ускорителя с нейтронно-производящей мишенью и бланкет из литиевых соединений. $\tilde{\nu}_e$ -спектр изотопа ⁸Li хорошо определен (что позволит исключить большие ошибки, характерные для реакторного антинейтринного спектра) и обладает высокой жесткостью, что обеспечит значительно меньшие погрешности при регистрации пороговых реакций ($\tilde{\nu}_e, p$) и ($\tilde{\nu}_e, d$). Высокую эффективность бланкета (большой выход изотопа ⁸Li) обеспечат дейтериды и дейтерированные гидроксиды лития и их тяжеловодные растворы. Расчеты выхода ⁸Li, проведенные для схемы тандема, продемонстрировали, что в сравнении с металлическим литием использование предлагаемых соединений позволит сократить больше чем на порядок массу высокочистого изотопа ⁷Li (с примесью ⁶Li не более ~ 0,0001). Анализ плотности замедления нейтронов и образования ⁸Li (в бланкете на основе тяжеловодного раствора ⁷LiOD) позволил выявить сильно выраженную неравномерность в выходах ⁸Li в области вблизи мишени. Высокая концентрация ⁸Li в центральной области и быстрое ее падение при движении к периферии бланкета позволяют уменьшить как размеры бланкета (до 2,5 раз), так и массу ⁷Li до 200–100 кг. Уменьшение линейных размеров бланкета может быть критичным для точности осцилляционных экспериментов. Уменьшение необходимой массы ⁷Li с ~ 19,5 т до 200–100 кг может принципиально и положительно решить вопрос создания $\tilde{\nu}_e$ -источника на основе изотопа ⁷Li.

Автор благодарен Ю. С. Лютостанскому за полезные дискуссии. Автор выражает свою признательность Л. Б. Безрукову, Б. К. Лубсандоржиеву и И. И. Ткачеву за интерес к исследованию и поддержку работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kopp J., Maltoni M., Schwetz T. Are There Sterile Neutrinos at the eV Scale? // Phys. Rev. Lett. 2011. V. 107. P. 091801.
- 2. Belesev A. I. et al. Upper Limit on Additional Neutrino Mass Eigenstate in 2 to 100 eV Region from "Troitsk nu-Mass" Data // JETP Lett. 2013. V. 97. P. 67–69.
- 3. *Горбунов Д. С.* Стерильные нейтрино и их роль в физике частиц и космологии // УФН. 2014. Т. 184, № 5. С. 545–554.
- Maltoni M., Schwetz T. Sterile Neutrino Oscillations after First MiniBooNE Results // Phys. Rev. D. 2007. V.76. P.093005.
- 5. Conrad J. M. et al. Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements. arXiv:1207.4765v1 [hep-ex].
- 6. Zysina N. Yu., Fomichev S. V., Khruschov V. V. Mass Properties of Active and Sterile Neutrinos in a Phenomenological (3 + 1 + 2) Model // Phys. At. Nucl. 2014. V. 77. P. 890–900.
- 7. Алексанкин В. Г. и др. Бета- и антинейтринное излучение продуктов деления. М.: ЦНИИатоминформ, 1986.
- 8. Ляшук В.И., Лютостанский Ю.С. Антинейтринный источник высокой интенсивности на основе литиевого конвертора. Предложение к перспективному эксперименту по исследованию осцилляций // Письма в ЖЭТФ. Т. 103, № 5. С. 331–336.
- Korovkin V. A. et al. Measurement of Burnup of Nuclear Fuel in a Reactor by Neutrino Emission // Sov. At. Energy. 1984. V. 56, Iss. 4. P. 233.
- 10. Nakamura S. et al. Neutrino–Deuteron Reactions at Solar Neutrino Energies. arXiv:nucl-th/0201062v3; http://www-nuclth.phys.sci.osaka-u.ac.jp/top/Netal/index.html.
- 11. Kopeikin V. I., Mikaelyan L. A., Sinev V. V. Reactor as a Source of Antineutrinos Thermal Fission Energy // Phys. At. Nucl. 2004. V. 67. P. 1892–1899.
- 12. Овчинников Ф.Я., Семенов В.В. Эксплуатационные режимы водо-водяных энергетических ядерных реакторов. М.: Энергоатомиздат, 1988. С. 142–145.
- 13. *Kopeikin V. I.* Flux and Spectrum of Reactor Antineutrinos // Phys. At. Nucl. 2012. V. 75, No. 2. P. 143–152.
- Huber P. Determination of Antineutrino Spectra from Nuclear Reactors // Phys. Rev. C. 2011. V. 84. P. 024617.
- 15. Mueller Th. A. et al. Improved Predictions of Reactor Antineutrino Spectra // Ibid. V. 83. P. 054615.
- Hayes A. C. et al. Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly // Phys. Rev. Lett. 2014. V. 112. P. 202501.
- 17. Schreckenbach K. et al. Determination of the Antineutrino Spectrum from ²³⁵U Thermal Neutron Fission Products up 9.5 MeV // Phys. Lett. B. 1985. V. 160. P. 325.

- Hahn A. A. et al. Antineutrino Spectra from ²⁴¹Pu and ²³⁹Pu Thermal Neutron Fission Products // Phys. Lett. B. 1989. V. 218. P. 365.
- 19. *Haag N. et al.* Experimental Determination of the Antineutrino Spectrum of the Fission Products of ²³⁸U // Phys. Rev. Lett. 2014. V. 112. P. 122501.
- 20. Lyashuk V. I., Lutostansky Yu. S. Intensive Neutrino Source on the Base of Lithium Converter. arXiv:1503.01280v2 [physics.ins-det].
- 21. Басов Н.Г., Розанов В.Б. О возможности создания мощного нейтринного источника // Письма в ЖЭТФ. 1985. Т. 42, вып. 8. С. 350.
- 22. Микаэлян Л. А., Спивак П. Е., Циноев В. Г. Предложение эксперимента по исследованию физики антинейтрино малых энергий // ЯФ. 1965. Т. 1, вып. 5. С. 853–855.
- 23. Лютостанский Ю. С., Ляшук В. И. Литиевый конвертор реакторных нейтронов в антинейтрино. І. Статический режим работы. Препринт ИТЭФ-66. М.: ЦНИИатоминформ, 1989.
- 24. Lyutostansky Yu. S., Lyashuk V. I. Powerful Hard-Spectrum Neutrino Source Based on Lithium Converter of Reactor Neutrons to Antineutrinos // Nucl. Sci. Eng. 1994. V. 117. P. 77–87.
- 25. *Лютостанский Ю. С., Ляшук В. И.* Концепция мощного антинейтринного источника // Изв. РАН. Сер. физ. 2011. Т. 75, № 4. С. 504–509.
- 26. Reister R. The Nuclear Power Industry and Li-7 // 2013 Workshop on Isotope Federal Supply and Demand, Hilton Washington DC/Rockville, Rockville, Maryland, USA, Sept. 19, 2013; http://science.energy.gov/np/community-resources/workshops/2013-workshop-on-isotope-federalsupply-and-demand/agenda/; http://science.energy.gov/~/media/np/pdf/workshops/workshop-on-isotope-federal-supply-anddemand-2013/presentations/Reister_LITHIUM-7_SUPPLY.pdf.
- Ault T. et al. Lithium Isotope Enrichment: Feasible Domestic Enrichment Alternatives-2012. Department of Nuclear Engineering, University of California, Berkeley. Tech. Rep. UCBTH-12-005; http://fhr.nuc.berkeley.edu/wpcontent/uploads/2014/10/12-005_NE-170_Lithium-Enrichment.pdf.
- 28. http://www.nccp.ru/products/lithium-7/
- 29. http://www.tianqilithium.com/en/about.aspx?t=49
- 30. Lutostansky Yu. S., Lyashuk V. I. Antineutrino Spectrum from Powerful Reactor and Neutrino Converter System // Part. Nucl., Lett. 2005. V. 2, No. 4. P. 60–65.
- 31. *Stavissky Yu. Ya.* Giant Pulses of Thermal Neutrons in Large Accelerator Beam Dumps. Possibilities for Experiments // Usp. Fiz. Nauk. 2006. V. 176. P. 1283–1292.
- 32. Ляшук В. И., Лютостанский Ю. С. Интенсивный нейтринный источник на основе изотопа ⁷Li: реакторная и ускорительная реализации // Изв. РАН. Сер. физ. 2015. Т. 79, № 4. С. 472–477.
- Лютостанский Ю. С., Ляшук В. И. Конвертор реакторных нейтронов в антинейтрино на основе литиевых соединений и их растворов // АЭ. 1990. Т. 69, вып. 2. С. 120–122.
- Bungau A. et al. Proposal for an Electron Antineutrino Disappearance Search Using High-Rate ⁸Li Production and Decay // Phys. Rev. Lett. 2012. V. 109. P. 141802.
- 35. Adelmann A. et al. Cost-Effective Design Options for IsoDAR. arXiv:1210.4454v1[physics.acc-ph].
- Аксентьев А. Е. и др. Разработка концепции ускорителя-драйвера протонного пучка на энергию 600–1000 МэВ при средней мощности пучка более 1 МВт // АЭ. 2014. Т. 117, вып. 4. С. 217– 224.
- 37. Djurcic Z. et al. (JUNO Collab.). arXiv:1508.07166v2.
- 38. Боровой А.А., Хакимов С.Х. Нейтринные эксперименты на ядерных реакторах. М.: Энергоатомиздат, 1990. 152 с.
- 39. MCNPXTM User's Manual / Ed. L. S. Waters. TPO-E83-G-UG-X-00001.

Получено 28 июня 2016 г.