ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ТЕОРИЯ

КХД С КИРАЛЬНЫМ ХИМИЧЕСКИМ ВЕКТОРОМ: МОДЕЛИ И РЕШЕТКИ В СРАВНЕНИИ

А. А. Андрианов ^{а, б, 1}, В. А. Андрианов ^а, Д. Эсприу ^б, А. В. Якубович ^а, А. Е. Путилова ^а

^{*a*} Санкт-Петербургский государственный университет, Санкт-Петербург, Россия ^{*б*} Университет Барселоны, Барселона, Каталония, Испания

Обсуждается образование локального нарушения четности (ЛНЧ) в центральных столкновениях тяжелых ионов при высоких энергиях. ЛНЧ в файерболе может произойти в результате возникновения разности числа плотностей правых и левых киральных фермионов (кирального имбаланса), которое можно индуцировать киральным (аксиальным) химическим потенциалом. На основе эффективного мезонного лагранжиана, мотивированного КХД, в киральной среде анализируются свойства легких скалярных и псевдоскалярных мезонов (π , a_0). Показано, что экзотические распады скалярных мезонов возникают в результате смешивания π и a_0 вакуумных состояний в присутствии кирального имбаланса. Электромагнитный формфактор пиона приобретает пространственно-нечетную добавку, которая создает поляризационную асимметрию в пионной поляризуемости. Мы считаем, что вышеуказанные свойства ЛНЧ могут быть установлены в экспериментах на ускорителях LHC, RHIC, CBM FAIR и NICA.

A formation of Local Parity Breaking (LPB) in central heavy-ion collisions (HIC) at high energies is discussed. LPB in the fireball can be produced by a difference between the number of densities of right- and left-handed chiral fermions (Chiral Imbalance) which is implemented by a chiral (axial) chemical potential. Based on the effective meson Lagrangian motivated by QCD, in the chiral medium the properties of light scalar and pseudoscalar mesons (π , a_0) are analyzed. It is found that exotic decays of scalar mesons arise as a result of mixing of π and a_0 vacuum states in the presence of chiral imbalance. The pion electromagnetic formfactor obtains a parity-odd supplement which generates a photon polarization asymmetry in pion polarizability. We believe that the above-mentioned properties of LPB can be revealed in experiments at the LHC, RHIC, CBM FAIR and NICA accelerators.

PACS: 12.38.-t; 12.38.Mh; 12.40.-y; 13.25 Jx

1. КИРАЛЬНЫЙ ИМБАЛАНС: ТОПОЛОГИЧЕСКИЙ И КИРАЛЬНЫЙ ХИМИЧЕСКИЕ ПОТЕНЦИАЛЫ

В последнее время большой интерес приобрело изучение барионной материи в экстремальных условиях [1]. Среда, создаваемая в столкновениях тяжелых ионов, может служить для детальных исследований, как экспериментальных, так и теоретических,

¹E-mail: a.andrianov@spbu.ru

различных фаз адронного вещества. В этом контексте новые свойства квантовой хромодинамики в горячей и плотной среде устанавливаются в текущих экспериментах на ускорителях RHIC и LHC [2].

При столкновении тяжелых ионов в принципе имеется две различные экспериментальные ситуации: периферийные и центральные столкновения. В первом случае может возникнуть так называемый киральный магнитный эффект (КМЭ) (подробности см. в [3], а также [4] для дополнительных ссылок).

Во втором случае имеются некоторые экспериментальные данные аномального избытка дилептонов в области малых инвариантных масс, быстрот и умеренных значений поперечных импульсов [5] (см. обзоры в [6]), что можно рассматривать как результат ЛНЧ в среде (подробности можно найти в [7]). В частности, в столкновениях тяжелых ионов при высоких энергиях, когда растут температуры и барионные плотности, метастабильные состояния могут появиться в файерболе конечного объема с нетривиальным аксиальным топологическим зарядом (благодаря флуктуациям глюонного поля) T_5 , который связан с глюонным калибровочным полем G_i ,

$$T_{5}(t) = \frac{1}{8\pi^{2}} \int_{\text{vol}} d^{3}x \,\varepsilon_{jkl} \,\text{Tr}\left(G^{j}\partial^{k}G^{l} - i\frac{2}{3}G^{j}G^{k}G^{l}\right), \quad j, k, l = 1, 2, 3, \tag{1}$$

где интегрирование производится по объему файербола.

На основе соотношения частичного сохранения аксиального тока (ЧСАТ) можно найти связь между ненулевым топологическим зарядом и нетривиальным аксиальным зарядом кварков Q_5^q [7]. А именно, интегрируя по конечному обему файербола мы приходим к соотношению

$$\frac{d}{dt}(Q_5^q - 2N_f T_5) \simeq 2i \int_{\text{vol}} d^3x \,\widehat{m}_q \overline{q} \gamma_5 q, \quad Q_5^q = \int_{\text{vol}} d^3x \, q^{\dagger} \gamma_5 q = \langle N_L - N_R \rangle, \tag{2}$$

где $\langle N_L - N_R \rangle$ обозначает вакуумное среднее между левыми и правыми плотностями барионной материи (киральный имбаланс). Отсюда следует, что в киральном пределе (когда массы легких кварков нулевые) аксиальный заряд кварков сохраняется при наличии ненулевого (метастабильного) топологического заряда. Если для времени жизни файербола и его размера порядка L = 5-10 Фм среднее от топологического заряда отлично от нуля $\langle \Delta T_5 \rangle \neq 0$, то он может быть сопоставлен топологическому химическому потенциалу μ_T или аксиальному химическому потенциалу μ_5 [8], если пренебречь массами u-, d-кварков. Таким образом, мы имеем

$$\langle \Delta T_5 \rangle \simeq \frac{1}{2N_f} \langle Q_5^q \rangle \iff \mu_5 \simeq \frac{1}{2N_f} \mu_T.$$
 (3)

Таким образом, добавляя к лагранжиану член $\Delta \mathcal{L}_{top} = \mu_T \Delta T_5$ или $\Delta \mathcal{L}_q = \mu_5 Q_5^q$, мы получаем возможность описать нетривиальные флуктуации топологического заряда (флуктоны) в файерболе, который может состоять из нуклонов или кварков.

В общем случае лоренц-ковариантная форма поля, дуального к флуктонам, может быть описана классическим псевдоскалярным полем a(x) так, что

$$\Delta \mathcal{L}_a = \frac{N_f}{2\pi^2} K_\nu \partial^\nu a(x) \simeq \frac{1}{\pi^2} K_\nu b^\nu \iff b^\nu \overline{q} \gamma_\nu \gamma_5 q, \quad b_\nu \simeq \langle \partial_\nu a(x) \rangle \simeq \text{const.}$$
(4)

Таким образом, в квазиравновесной ситуации появление почти сохраняющегося кирального заряда может быть учтено с помощью аксиального (кирального) векторного химического потенциала b_{ν} . Появление пространственной векторной части в b_{ν} может быть связано с неравновесным аксиальным потоком заряда [9].

2. ЭФФЕКТИВНЫЙ МЕЗОННЫЙ ЛАГРАНЖИАН, ОСНОВАННЫЙ НА КХД, ДЛЯ СЛУЧАЯ SU_f(2)

Для выявления свойств локального нарушения четности в адронном файерболе мы используем обобщенную сигма-модель с фоновым 4-вектором для аксиального химического потенциала [10], симметричную относительно $SU_L(N_f) \times SU_R(N_f)$, для *u*-, *d*-кварков $(N_f = 2)$,

$$L = \frac{1}{4} \operatorname{Tr} \left(D_{\mu} H \left(D^{\mu} H \right)^{\dagger} \right) + \frac{B}{2} \operatorname{Tr} \left[m (H + H^{\dagger}) \right] + \frac{M^2}{2} \operatorname{Tr} \left(H H^{\dagger} \right) - \frac{\lambda_1}{2} \operatorname{Tr} \left[(H H^{\dagger})^2 \right] - \frac{\lambda_2}{4} \left[\operatorname{Tr} \left(H H^{\dagger} \right) \right]^2 + \frac{c}{2} \left(\det H + \det H^{\dagger} \right), \quad (5)$$

где $H = \xi \Sigma \xi$ — оператор для мезонных полей; m — средняя масса токовых кварков; M — «тахионная» масса, генерирующая спонтанное нарушение киральной симметрии; $B, c, \lambda_1, \lambda_2$ — вещественные постоянные.

Матрица Σ включает в себя синглетный скалярный мезон σ , его вакуумное среднее v и изотриплет скалярных мезонов a_0^0 , a_0^- , a_0^+ (детали см. в [10]).

Оператор ξ осуществляет нелинейное представление киральной группы и определяется изотриплетом π^0 , π^- , π^+ псевдоскалярных мезонов [10].

Ковариантная производная от H содержит внешние калибровочные поля R_{μ} и L_{μ} , $D_{\mu}H = \partial_{\mu}H - iL_{\mu}H + iHR_{\mu}$.

Эти поля включают фотонное поле A_{μ} и дополняются также фоновым 4-вектором аксиального химического потенциала $(b_{\mu}) = (b_0, \mathbf{b}), R_{\mu} = e Q_{\text{em}} A_{\mu} - b_{\mu} \cdot 1_{2 \times 2}, L_{\mu} = e Q_{\text{em}} A_{\mu} + b_{\mu} \cdot 1_{2 \times 2},$ где $Q_{\text{em}} = (1/2)\tau_3 + (1/6)1_{2 \times 2}$ — матрица электромагнитного заряда.

Полный эффективный мезонный лагранжиан должен включать в себя также P-нечетную часть: эффективное действие Becca–Зумино–Виттена (B3B) [11], которое модифицируется в среде с киральным имбалансом. Соответствующие части лагранжиана B3B имеют вид

$$\Delta \mathcal{L}_{\rm WZW} = -\frac{ie \, N_c b_\nu}{6\pi^2 \, v^2} \, \epsilon^{\,\nu\sigma\lambda\rho} \, A_\rho(\partial_\sigma \pi^+) \, (\partial_\lambda \pi^-) - \frac{e^2 N_c}{24 \, \pi^2 v} \, \epsilon^{\,\nu\sigma\lambda\rho} \, (\partial_\sigma A_\lambda) (\partial_\nu A_\rho) \pi^0. \tag{6}$$

3. КИРАЛЬНЫЙ (СКАЛЯРНЫЙ) КОНДЕНСАТ В ЗАВИСИМОСТИ ОТ КИРАЛЬНОГО ХИМИЧЕСКОГО ВЕКТОРА

Уравнение массовой щели для скалярного конденсата получается из (5):

$$-4(\lambda_1 + \lambda_2)v^3 + (2M^2 + 4b^2 + 2c)v + 2Bm = 0.$$

Общее решение этого уравнения $v(b_{\mu})$ может быть найдено точно [12].

Рис. 1. *a*) Конденсат в области $b_{\mu}b^{\mu} > 0$ и $b_{\mu}b^{\mu} < 0$; *б*) вакуумное среднее $v(\mu_5) \sim \langle \bar{\psi}\psi \rangle / B$ из вычислений на решетке [13]

Заметим, что существуют различные области кирального вектора, инвариантные относительно преобразований Лоренца системы отсчета файербола.

1. Область имбаланса кирального заряда, где $b^2 > 0$, тогда в системе покоя киральный фон $(b^{\mu}) = (\mu_5, 0, 0, 0)$.

2. Область имбаланса кирального вектора, где $b^2 < 0$, тогда в системе покоя киральный фон может быть расположен в направлении оси пучка ионов $(b^{\mu}) = (0, 0, 0, b)$.

3. Переходная фаза с $b^2 = 0$, тогда фон светового фронта может быть выбран вдоль $(b^{\mu}) = (b, 0, 0, \pm b).$

Подчеркнем, что в горячей среде лоренц-инвариантность нарушена термостатом и физические эффекты зависят от конкретного набора компонент (b^{μ}) .

Графики для конденсата на рис. 1 показывают усиление нарушения киральной симметрии или восстановление киральной симметрии в зависимости от знака $b_{\mu}b^{\mu}$.

А именно, в области кирального имбаланса с $b^2 > 0$ увеличение аксиального химического потенциала вызывает рост кирального конденсата, т. е. усиление нарушения киральной симметрии (HKC).

И наоборот, для области имбаланса кирального вектора с $b^2 < 0$ киральный конденсат уменьшается с ростом $|b^2|$ вплоть до $|b^2| = (1/2)(M^2 + c)$. На этом масштабе в киральном пределе $m \to 0$ параметр нарушения киральной симметрии $v \to 0$ (см. ниже) и спонтанное нарушение киральной симметрии восстанавливается. Наконец, параметр НКС v нечувствителен к b^{μ} в координатах светового фронта.

Для $b^2 > 0$ в системе покоя вектора $(b_{\mu}) = (\mu_5, 0, 0, 0)$ можно сравнить предсказания нашего (предложенного) мезонного лагранжиана (рис. 1, *a*) с оценками решеточных вычислений [13] (см. рис. 1, δ), которые явно показывают усиление НКС.

Однако, после евклидизации КХД, ненулевые вещественные компоненты (b_{μ}) порождают неэрмитовы, чисто мнимые вершины, что затрудняет вычисление на решетке их вклада в кварковый детерминант.

4. СПЕКТР МАСС МЕЗОНОВ В ОБЛАСТИ КИРАЛЬНОГО ИМБАЛАНСА

Введем определение масс мезонных состояний в среде с киральным имбалансом. Матрица масс для скалярных и псевдоскалярных мезонов на диагонали принимает следующие значения:

$$m_a^2 = -2(M^2 - 2(3\lambda_1 + \lambda_2)v^2 - c + 2b^2),$$

$$m_\sigma^2 = -2(M^2 - 6(\lambda_1 + \lambda_2)v^2 + c + 2b^2),$$

$$m_\pi^2 = \frac{2Bm}{v}.$$
(7)

После диагонализации мы определим эффективные массы как $m_{\rm eff+}$ для поля \tilde{a} и $m_{\rm eff-}$ для поля $\tilde{\pi}$,

$$m_{\text{eff}\pm}^2 = \frac{1}{2} \left(m_a^2 + m_\pi^2 \pm \sqrt{(m_a^2 - m_\pi^2)^2 + (8 \, b^\mu \, k_\mu)^2} \right). \tag{8}$$

Для определения параметров модели нормируемся на вакуумные спектральные значения, примем $m_{\pi} = 139$ МэВ, $m_a = 980$ МэВ, $m_{\sigma} = 500$ МэВ, m = 5.5 МэВ, $\mu_5 = 0$, M = 300 МэВ, v = 92 МэВ. Затем из приведенных выше уравнений (7) можно найти $\lambda_1 = 1.64850 \cdot 10$, $\lambda_2 = -1.31313 \cdot 10$, $c = -4.46874 \cdot 10^4$ МэВ², $b = 1.61594 \cdot 10^5$ МэВ².

После диагонализации массовой матрицы состояния a_0 - и π -мезонов оказываются смешанными. Собственные состояния легко найти [12]. Мы используем обозначения \tilde{a}_0 , $\tilde{\pi}$, указывая на то, что эти состояния стремятся к a_0 , π , когда $b^{\mu} = 0$.

4.1. Массы в области НКС при $b_{\mu}b^{\mu} > 0$. Это область, где нарушение киральной симметрии усиливается при росте аксиального химического потенциала (рис. 2) и \tilde{a}_0 - и σ -мезоны становятся, соответственно, более тяжелыми.

Рис. 2. Зависимость эффективных масс \tilde{a}_0 -мезона и $\tilde{\pi}$ -мезона и массы σ -мезона от аксиального химического потенциала $b = \mu_5$ для разных значений $|\vec{k}|$ в области $b_{\mu}b^{\mu} > 0$

В то же время эффективная масса $\tilde{\pi}$ -мезона в системе покоя медленно уменьшается и уменьшается быстрее в движущейся системе отсчета с $|\vec{k}| \neq 0$. Можно видеть, как $\tilde{\pi}$ мезон достигает безмассовой точки, а дальше по квадрату массы становится «тахионом», что, однако, не вызывает никаких причинно-следственных проблем. Можно проверить, что групповая скорость этих состояний остается меньше скорости света.

4.2. Массы в области НКС при $b_{\mu}b^{\mu} < 0$. В этой области в системе покоя можно увидеть восстановление киральной симметрии с объединением масс всех скаляров и псевдоскаляров (рис. 3). Но в движущейся системе отсчета поведение массы пиона более специфично. Сначала пионные массы обращаются в нуль, а затем их квадраты становятся

Рис. 3. Зависимость эффективной массы \tilde{a}_0 -мезона и σ -мезона от аксиального химического потенциала b, зависимость эффективной массы $\tilde{\pi}$ -мезона от b для разных значений $|\vec{k}|$ в области $b_{\mu}b^{\mu} < 0$, угол между \vec{k} и \vec{b} равен $\theta = 0$

отрицательными. Затем они снова появляются с положительными квадратами масс и медленно приближаются к массам скаляров в асимптотике. Таким образом, влияние движения системы отсчета на спектр пионов сильно отличается от наивных предположений.

5. АНОМАЛЬНЫЕ Р-НЕЧЕТНЫЕ РАСПАДЫ $\tilde{a}_0^{\pm} \rightarrow \tilde{\pi}^{\pm} \gamma, \, \tilde{\pi}^0 \rightarrow \gamma \gamma, \, \, \tilde{a}_0^0 \rightarrow \gamma \gamma$

После смешивания $\pi, a_0^0 \to \tilde{\pi}, \tilde{a}_0^0$ возникает (возможен) распад $\tilde{a}_0^{\pm} \to \tilde{\pi}^{\pm} \gamma$, который нарушает пространственную четность и, следовательно, запрещен в вакууме.

Рис. 4. Ширина распада $a_0^{\pm} \rightarrow \pi^{\pm} \gamma$, $\mu_5 = 100$ МэВ

Рис. 5. Ширины распада: a) $\tilde{\pi}^0 \to \gamma \gamma$; b) $\tilde{a}_0^0 \to \gamma \gamma$, $\mu_5 = 100$ МэВ

На графике (рис. 4) показан вклад вершины ВЗВ для этого распада после смешивания состояний, здесь $q = |\vec{q}|$ — модуль пространственного импульса скалярного мезона. Также в хорошо известном канале распада $\pi^0 \to \gamma\gamma$ после смешивания возникает новый резонанс $\tilde{a}_0^0 \to \gamma\gamma$. Из графиков для коэффициентов смешивания мы заключаем, что эти процессы сравнимы по величине ширины распада.

Для псевдоскаляров и скаляров в подвижной системе отсчета скорости распадов значительно увеличиваются (см. рис. 4 и 5). Эти эффекты противоположны релятивистскому замедлению времени.

6. ВЫВОДЫ И ПЕРСПЕКТИВЫ

В этой работе мы описали возможность локального нарушения пространственной четности, возникающего в плотном горячем барионном веществе (адронный файербол) при столкновениях тяжелых ионов при высоких энергиях. Феноменология ЛНЧ в файерболе основана на введении топологического (аксиального) заряда и топологического (кирального) химического потенциала. Флуктуации топологического заряда оказывают влияние на физику адронов через аксиальный химический потенциал. Мы предложили сигма-модель, основанную на КХД, для описания псевдоскалярных, а также изоскалярных и изотриплетных скалярных мезонов в среде файербола. В результате исследований установлено:

• Есть два способа увеличить возможность обнаружения нарушения локальной пространственной четности: во-первых, разработать рецепты для экспериментаторов регистрации специфических эффектов, генерируемых в СР-нечетной среде; во-вторых, измерить выход массивных частиц без СР-четности. В обоих случаях метод кирального химического потенциала весьма помогает в предсказаниях.

• Кроме того, мы уже предложили [8] модель векторной доминантности с киральным имбалансом: спектр массивных векторных мезонов расщепляется на три компоненты с различными поляризациями и с различными эффективными массами, которые могут быть использованы для обнаружения локального нарушения пространственной четности. Предлагаемые схемы выявления локального нарушения четности помогают (частично) объяснить качественно и количественно аномальный выход дилептонных пар в экспериментах CERES, PHENIX, STAR, NA60 и ALICE. Соответственно, установление его физического происхождения может служить основой для более глубокого понимания свойств КХД в среде при экстремальных условиях. Экспериментальные коллаборации определенно должны проверить эту возможность.

• Недавно в [14] был предложен интересный способ обнаружения ЛНЧ путем измерения асимметрии поляризации фотонов в процессе $\pi^{\pm}\gamma \rightarrow \pi^{\pm}\gamma$. Мы расширяем это предложение, подчеркивая резонансное усиление при энергиях, сравнимых с массой скаляров \tilde{a}_{0}^{\pm} .

Благодарности. Мы признательны организаторам 11-го APCTP-BLTP JINR-PNPI NRC KI-SPbU совместного семинара «Современные проблемы ядерной физики и физики элементарных частиц» (Петергоф, Санкт-Петербург, 24–28 июля 2017 г.) за плодотворную встречу и замечательную атмосферу. А.А. и В.А. были поддержаны проектом РФФИ 16-02-00348, грантами 11.41.417.2017, 11.42.697.2017, 11.42.698.2017 и 11.41.1038.2017. Также эта работа поддержана грантами FPA2013-46570, 2014-SGR-104 и Consolider CPAN. Кроме того, финансирование предоставлено испанским MINECO в рамках проекта MDM-2014-0369 ICCUB (Unidad de Excelencia «Maria de Maeztu»).

СПИСОК ЛИТЕРАТУРЫ

- Jacobs P., Kharzeev D., Muller B., Nagle J., Rajagopal K., Vigdor S. arXiv:0705.1930 [nucl-ex]; Blaizot J.-P., Gelis F., Liao J.-F., McLerran L., Venugopalan R. // Nucl. Phys. A. 2012. V.873. P.68; arXiv:1107.5296 [hep-ph].
- Andronic A., Blaschke D., Braun-Munzinger P., Cleymans J., Fukushima K., McLerran L.D., Oeschler H., Pisarski R.D. // Nucl. Phys. A. 2010. V. 837. P.65; arXiv:0911.4806 [hep-ph]; Blaizot J.-P. // Nucl. Phys. A. 2010. V. 834. P.515C; arXiv:0911.5059 [hep-ph].
- Kharzeev D., Pisarski R. D., Tytgat M. H. G. // Phys. Rev. Lett. 1998. V.81. P. 512; Kharzeev D. E., McLerran L. D., Warringa H. J. // Nucl. Phys. A. 2008. V. 803. P. 227; Buckley K., Fugleberg T., Zhitnitsky A. // Phys. Rev. Lett. 2000. V. 84. P. 4814.
- 4. Ajitanand N., Esumi S., Lacey R. et al. P- and CP-Odd Effects in Hot and Dense Matter // Proc. of the RBRC Workshops. 2010. V. 96.
- Wurn P. et al. (CERES Collab.) // Nucl. Phys. A. 1995. V. 590, Nos. 1–2. P. 103–116; Agakichiev G. et al. (CERES Collab.) // Phys. Rev. Lett. 1995. V. 75. P. 1272; Eur. Phys. J. C. 2005. V. 41. P. 475; Arnaldi R. et al. (NA60 Collab.) // Phys. Rev. Lett. 2006. V. 96. P. 162302; Adare A. et al. (PHENIX Collab.) // Phys. Rev. C. 2010. V. 81. P. 034911; Agakichiev G. et al. (HADES Collab.) // Phys. Rev. Lett. 2007. V. 98. P. 052302; Phys. Lett. B. 2008. V. 663. P. 43–48; Lapidus K. O., Emel'yanov V. M. // Phys. Part. Nucl. 2009. V. 40. P. 29.
- Tserruya I. Electromagnetic Probes. arXiv:0903.0415; Brown G. E., Rho M. // Phys. Rev. Lett. 1991. V. 66. P. 2720–2723.
- Andrianov A. A., Andrianov V. A., Espriu D., Planells X. // Theor. Math. Phys. 2012. V. 170. P. 17; Andrianov A. A., Andrianov V. A. // Theor. Math. Phys. 2015. V. 185. P. 1370.
- Andrianov A. A., Andrianov V. A., Espriu D., Planells X. // Phys. Lett. B. 2012. V. 710. P. 230; Proc. Sci. QFTHEP. 2013. 025; Phys. Rev. D. 2014. V. 90. P. 034024.
- Kharzeev D., Kikuchi Y., Meyer R. arXiv:1610.08986 [cond-mat.mes-hall]; Sorin A., Teryaev O. // Nucl. Part. Phys. Proc. 2016. V. 273–275. P. 2587; Landsteiner K. // Acta Phys. Polon. B. 2016. V. 47. P. 2617; arXiv:1610.04413 [hep-th].
- 10. Andrianov A. A., Espriu D., Planells X. // Eur. Phys. J. C. 2013. V. 73. P. 2294.
- Wess J., Zumino B. // Phys. Lett. B. 1971. V. 37. P. 95; Witten E. // Nucl. Phys. B. 1983. V. 223. P. 422; Andrianov A. A., Andrianov V. A., Novozhilov V. Yu., Novozhilov Yu. V. // Theor. Math. Phys. 1987. V. 70. P. 43.
- 12. Andrianov A. A., Andrianov V. A., Espriu D., Iakubovich A. V., Putilova A. E. Exotic Meson Decays in the Environment with Chiral Imbalance. arXiv:1710.01760v1 [hep-ph].
- Braguta V. V. et al. // Phys. Rev. D. 2016. V. 93. P. 034509; Braguta V. V. et al. // AIP Conf. Proc. 2016. V. 1701. P. 060002; Braguta V. V., Kotov A. Yu. // Phys. Rev. D. 2016. V. 93. P. 105025.
- 14. Kawaguchi M., Harada M., Matsuzaki S., Ouyang R. M. // Phys. Rev. C. 2017. V. 95. P. 065204.