МОДЕЛИРОВАНИЕ ФОТОЯДЕРНОГО МЕТОДА ДЕТЕКТИРОВАНИЯ СКРЫТЫХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

Ю. Н. Покотиловский 1

Объединенный институт ядерных исследований, Дубна

Работа посвящена методу детектирования скрытых взрывчатых материалов и содержит описание расчетной модели детектирования β -активности ¹²В, генерируемого в углеродной мишени, скрытой в багаже, в реакции ¹³С $(\gamma, p)^{12}$ В пучком электронов с энергией 50 МэВ. Особое внимание уделено детальным расчетам ложных эффектов и фона, возникающего за счет генерации фотонейтронов. Также рассмотрено детектирование азота по реакциям ¹⁴N $(\gamma, 2n)^{12}$ N и ¹⁴N $(\gamma, 2p)^{12}$ B.

This work is devoted to the method of externally controlling objects to detect hidden explosives. A model description of the activation detection of carbon with the use of registering ¹²B-activity (β^- decay produced in a carbon target hidden in a luggage by a beam of electrons with an energy of 50 MeV due to the photonuclear reaction ¹³C(γ , p)¹²B is presented. The simulation is carried out with consideration for the influence of the main background processes related to the generation of photoneutrons. The detection of nitrogen due to reactions ¹⁴N(γ , 2n)¹²N and ¹⁴N(γ , 2p)¹²B is considered.

PACS: 24.30.Cz; 25.20.-x

1. ВВЕДЕНИЕ. ЯДЕРНЫЕ МЕТОДЫ ДЕТЕКТИРОВАНИЯ СКРЫТЫХ ВЗРЫВЧАТЫХ МАТЕРИАЛОВ

Неразрушающие методы контроля объектов разных размеров, от авиа- и железнодорожного багажа до судовых и железнодорожных контейнеров, от почтовых посылок до автомобилей, являются важной компонентой обеспечения безопасности в аэропортах, морских портах и на железнодорожных станциях.

Технологии обнаружения скрытых взрывчатых материалов, основанные на ядерных методах, сейчас разрабатываются в ряде лабораторий. Табл. 1 представляет разнообразие таких методов.

Ни один из указанных методов не является универсальным и не используется в реальных условиях.

¹E-mail: pokot@nf.jinr.ru

Моделирование фотоядерного метода детектирования скрытых взрывчатых веществ 117

Первичные частицы	Источник излучения	Детектируемые частицы		
Нейтроны тепловые, быстрые, быстрые меченые	Изотопные источники 252 Cf, Pu-Be, Am-Be, ускорители ионов D – D, D – T, 7 Li (p, n) , электронные ускорители	Нейтроны тепловые, быстрые, γ -кванты		
	Ускорители ионов ${}^{13}C(p, \gamma),$ ${}^{11}B(d, n, \gamma){}^{12}C,$ электронные ускорители	Фотонейтроны, β -частицы e^+, e^- , тормозное излучение		

Таблица 1. Возможные ядерные методы детектирования скрытых взрывчатых материалов

2. ФОТОЯДЕРНЫЙ МЕТОД ДЕТЕКТИРОВАНИЯ СКРЫТЫХ ВЗРЫВЧАТЫХ МАТЕРИАЛОВ

В этой работе рассматривается фотоядерный метод, основанный на использовании реакций

$^{13}\mathrm{C}(\gamma, p)^{12}\mathrm{B},$	$E_{\gamma,\mathrm{th}} = 17,5$ МэВ,	$E_{\beta,\max} = 13,368$ МэВ,	
		$\sigma_{ m max}pprox 8$ мб,	$T_{1/2} = 20,2 \text{ mc}, (1)$

¹⁴N(γ, 2n)¹²N,
$$E_{\gamma, \text{th}} = 30,6$$
 MэB, $E_{\beta^+, \text{max}} = 16,316$ MэB,
 $\sigma_{\text{max}} \approx 3$ мкб, $T_{1/2} = 11$ мс, (2)

¹⁴N(γ, 2p)¹²B,
$$E_{\gamma, \text{th}} = 25,1$$
 M9B, $E_{\beta, \text{max}} = 13,368$ M9B,
 $\sigma_{\text{max}} \approx 1,5$ μkg, $T_{1/2} = 20,2$ μc. (3)

В первом предложенном варианте [1] предлагалось регистрировать на совпадения два γ -кванта аннигиляции позитронов из реакции (2). В дальнейших предложениях [2–8] рассматривались все три реакции, при этом основным сигналом наличия взрывчатого вещества предлагалось считать соотношение вкладов активности в измеряемой временной кривой распада, характерных для ¹²В с $T_{1/2} = 20,2$ мс, и, соответственно, позитронной компоненты с $T_{1/2} = 11$ мс для ¹²N. Это должно дать информацию о специфическом соотношении углерода и азота, получаемом из отношения в измеряемой временной кривой спада активности констант распада ¹²В и ¹²N. Таким образом, при практической реализации метод заключается в последовательном сканировании исследуемого объекта импульсным пучком тормозных γ -квантов и экспресс-анализе временного спектра после каждого импульса.

В упомянутых работах отмечалось, что изотопы ¹²N и ¹²B являются уникальными в том отношении, что для времен распада в интервале 3–80 мс практически нет других изотопов, которые могут быть получены в этой области в фотоядерных реакциях с пороговой энергией γ -квантов ниже 50 МэВ. Единственное исключение — изотоп ¹³B (β -распад, $T_{1/2} = 17,36$ мс, $E_{\beta max} = 13,4$ МэВ) из реакции ¹⁶O(γ , 3p)¹³B ($E_{th} = 43,2$ МэВ). Сечение этой реакции неизвестно, но можно ожидать, что оно мало, что типично для фотоядерных реакций с вылетом трех нуклонов. Малое время распада ¹²N и ¹²B и большая энергия β -распада могут, в принципе, обеспечить высокое быстродействие фотоядерного метода.

118 Покотиловский Ю. Н.

В табл. 2 (в большей части заимствованной из [7]) приведены химические формулы основных взрывчатых веществ и материалов, составляющих возможный фон, а также соотношение концентраций азота и углерода, которое может служить признаком наличия опасных материалов.

Вещество	N/C	Вещество	N/C
THT $C_7N_3O_6H_5$	3/7	Нитрон $(C_3NH_3)_n$	1/3
Пентрит $C_5N_4O_{12}H_8$	4/5	Нейлон $(C_{12}N_2O_2H_{22})_n$	1/6
Тетрил $C_7N_5O_8H_5$	5/7	Капрон $(C_6 NOH_{11})_n$	1/6
Гексоген $C_3N_6O_6H_6$	2/1	Натриевое мыло (C ₁₈ O ₂ NaH ₃₅)	0
Октоген $C_4N_8O_8H_8$	2/1	Шампунь-К $(C_{16}O_2KH_3)$	0
		Целлюлоза $(C_6H_{10}O_5)_n$	0

Таблица 2. Химические формулы и отношения N/C для разных веществ

Поскольку в реакции (3) генерируется 12 B, неотличимый от получаемого из реакции (1), то о наличии азота можно судить только по позитронной активности из реакции (2).

Энергетическая зависимость сечения реакции (1), измеренная в работах [9–11], показана на рис. 1. В дальнейших расчетах генерации ¹²В использовалось сечение, усредненное по работам [10, 11]. Компиляция имеющихся экспериментальных и модельнорасчетных данных о сечениях реакций (1)–(3), а также самостоятельные модельные расчеты этих сечений вместе с сопоставлением и анализом сведений об этих сечениях приведены в [12]. Как следует из этого анализа, экспериментальных данных об энергетической зависимости сечений реакций (2) и (3) нет, расчеты [4, 12–14] дают резко расходящиеся предсказания (рис. 2 и 3). Значения величин σ_{max} , приведенные для реакций (2) и (3), взяты из последних расчетов [12].

В работах [3,4] приведены весьма неполные данные о тестовых экспериментах по детектированию углерода, меламина ($C_3N_6H_3$) и некоторых взрывчатых соединений. Компьютерное моделирование эксперимента с углеродной мишенью содержится в работе [15].

Рис. 1. Результаты измерений сечения реакции ${}^{13}C(\gamma, p){}^{12}B$ в зависимости от энергии фотонов E_{γ} . Сплошная линия — [9]; кружки с «усами» ошибок — [10]; вертикальные штрихи — [11]

Рис. 2. Расчетные сечения реакции $^{14}N(\gamma, 2n)^{12}N$ в зависимости от энергии фотонов: I — из работы [13]; 2 — из работы [14]; 3 — из работы [12] по программе [16]; 4 из работы [12] по программе [17]; 5 — из работы [4]

Центральная часть МСПР-

геометрии вычислений. В центре мишень (ячейка 15), ниже — имитатор ускорителя электронов с проводом пучка, по бокам от мишени — сцинтилляционные детекторы, окруженные свин-

Рис. 4.

цовой защитой

Рис. 3. Расчетные сечения реакции ${}^{14}N(\gamma, 2p){}^{12}B$ в зависимости от энергии фотонов: I — из работы [13]; 2 — из работы [14]; 3 — из работы [12] по программе [16]; 4 — из работы [4]

3. ГЕОМЕТРИЯ РАСЧЕТОВ

Центральная часть MCNP-геометрии, используемой в расчетах, показана на рис. 4 (вертикальное сечение). В расчетной модели зал имеет размеры $6 \times 6 \times 4,4$ м, стены, пол и потолок зала имеют одинаковую толщину 1 м и выполнены из бетона с плотностью $6,5 \text{ г} \cdot \text{см}^{-3}$, состав которого в процентах по числу атомов указан в табл. 3.

Таблица 3. Элементный состав бетона стен зала облучений

Параметр	Компонент								
	Н	0	Na	С	Al	Si	Κ	Ca	Fe
Атомная концентрация, %	8,45	60,4	0,95	0,3	2,5	24,2	0,69	2,05	0,46

Рис. 5. Гамма-спектры, эмитируемые с поверхности диаметром 2 см Та-радиатора разной толщины в расчете на 1 электрон с энергией 50 МэВ

Пучок электронов с энергией 50 МэВ, диаметром 2 см облучает Та-радиатор толщиной 0,35 см. Рис. 5 показывает результаты оптимизационных расчетов по выбору толщины Та-мишени. Поток тормозных γ -квантов из радиатора на мишень падает вертикально, расстояние от радиатора до поверхности мишени — 18 см, расстояние от мишени до пола — 1 м. Мишень представляет собой параллелепипед размерами 90 × 60 × 20 см (авиабагаж средних размеров), заполненный материалом химического состава HCNO плотностью 0,35 г · см⁻³. Такой состав был выбран из тех соображений, что типичный багаж содержит в основном одежду, изготовленную из хлопка, шерсти или синтетических тканей. Пучок электронов направлен нормально по отношению к большой грани мишени размером 60 × 90 см и может сканировать ее площадь. Для регистрации распадов ¹²В (электронов и тормозных γ -квантов) предназначены два детектора с пластическим сцинтиллятором толщиной 20 см и диаметром 1 м, входная поверхность которых расположена на расстоянии 85 см от центра мишени. Сцинтилляторы окружены свинцовой защитой с толщинами стенок и дна 20 см и дополнительным свинцовым коническим коллиматором в направлении к мишени для лучшей защиты от внешнего излучения.

4. РАСЧЕТ ГЕНЕРАЦИИ 12 В

Последовательность расчета генерации ¹²В следующая. Сначала рассчитывается распределение плотности потока тормозных γ -квантов по толщине мишени. Рис. 6 показывает спектры плотности потока γ -квантов на входе и выходе из мишени толщиной 20 см, усредненные по пятну диаметром 6 см. Затем на основе полученных потоков γ -квантов и сечения реакции (1) (см. рис. 1) рассчитывается генерация ¹²В:

$$N_{^{12}\mathrm{B}} = c(^{13}\mathrm{C})\frac{N_A}{A} \int \phi(E_\gamma) \,\sigma(E_\gamma) \,dE_\gamma,\tag{4}$$

Рис. 6. Гамма-спектры на входе (1) и выходе (2) из мишени в облучаемом пятне радиусом 3 см в расчете на 1 мкКл электронов с энергией 50 МэВ

где $N_{^{12}\text{B}}$ — число атомов ^{12}B , образованных внутри мишени в 1 г углерода естественного состава; $c(^{13}\text{C}) = 0,0107$ — концентрация ^{13}C в естественном углероде; N_A — число Авогадро; A = 12 — атомный вес углерода; $\phi(E_{\gamma})$ — спектр плотности потока γ -квантов в мишени (среднее распределение по двум кривым рис. 6); $\sigma(E_{\gamma})$ — сечение реакции (1) (см. рис. 1).

Результат расчета по уравнению (4): число ядер 12 В, образовавшихся в 1 г углерода естественного состава в центре багажа при импульсе электронов зарядом 1 мкКл в описанных условиях облучения, равно $2,3 \cdot 10^4$.

5. РАСЧЕТ ЭФФЕКТИВНОСТИ РЕГИСТРАЦИИ РАСПАДОВ ¹²В

Очевидно, что эффективность регистрации электронов распада 12 В и тормозных γ -квантов, возникающих в мишени и в детекторе, зависит от положения источника в мишени по отношению к детектору. Для моделирования эффективности точечный

122 Покотиловский Ю. Н.

Рис. 8. Эффективность регистрации распадов ¹²В в зависимости от положения источника

источник со спектром электронов β -распада ¹²В располагался в разных положениях в мишени (ячейка 15 на рис. 4) на оси сцинтилляторов, и рассчитывался амплитудный спектр импульсов детектора (рис. 7). Далее при выбранном пороге регистрации импульсов детектора (50 кэВ) определялась эффективность регистрации распада ¹²В в функции положения источника (рис. 8). Например, при положении источника ¹²В в центре мишени эффективность регистрации распада детектором равна 7,5 · 10⁻³, и при числе распадов в мишени 2,3 · 10⁴ мкКл⁻¹ полное число импульсов детектора за время распада ¹²В равно 172 в расчете на 1 г углерода и 1 мкКл электронов в импульсе.

6. ВЫЧИСЛЕНИЕ ЛОЖНОГО ЭФФЕКТА ЗА СЧЕТ РЕАКЦИИ $^{12}\mathrm{C}(n,p)^{12}\mathrm{B}$ В СЦИНТИЛЛЯЦИОННОМ ДЕТЕКТОРЕ

Помимо естественного фона помещения и фона космических мюонов, значительного при большом объеме детектора, наиболее опасный источник фона образуется фотонейтронами, генерируемыми за время импульса ускорителя. В этом разделе рассмотрим фоновый эффект генерации ¹²В фотонейтронами в сцинтилляционном детекторе в реакции $^{12}C(n, p)^{12}B$ (пороговая энергия реакции $E_{th} = 12,6$ МэВ). Энергетический ход сечения этой реакции измерялся в нескольких работах [18–20]. Результаты этих работ заметно расходятся. Интегральное сечение при большой энергии измерено в серии работ [21]. Эти работы содержат также компиляцию всех экспериментальных и расчетных результатов. Сечение этой реакции, измеренное в работе [19] до энергии $E_n = 22$ МэВ и минимальное из всех известных, показано на рис. 9. Ход реакции при больших энергиях является дискуссионным [21], однако поскольку спектр фотонейтронов резко падает с увеличением энергии, можно ожидать, что вклад в эффект от больших энергий нейтронов невелик.

Рис. 10 показывает рассчитанный спектр быстрых нейтронов в детекторе, на основе которого с использованием уравнения

$$N_{^{12}\mathrm{B}} = c(^{12}\mathrm{C})\frac{N_A\,\rho V}{A}\int\phi(E_n)\,\sigma(E_n)\,dE_n,\tag{5}$$

Рис. 9. Сечение реакции ${}^{12}C(n, p){}^{12}B$ в зависимости от энергии нейтронов [19]

где $N_{^{12}\text{B}}$ — число атомов ^{12}B , образованных в объеме детектора; $c(^{12}\text{C})$ — доля ядер ^{12}C в сцинтилляторе; N_A — число Авогадро; ρ — плотность сцинтиллятора; A = 13 — молекулярный вес сцинтиллятора; $\phi(E_n)$ — спектр плотности потока нейтронов в сцинтилляторе (см. рис. 10); $\sigma(E_n)$ — сечение реакции $^{12}\text{C}(n,p)^{12}\text{B}$ (см. рис. 9), можно рассчитать число ядер ^{12}B , образованных в сцинтилляторе за счет реакции $^{12}\text{C}(n,p)^{12}\text{B}$. Оно равно $1,75 \cdot 10^4$ в расчете на 1 мкКл электронов в импульсе. Существенно, что в отличие от ^{12}B , образованного в мишени, эффективность регистрации распадов ^{12}B , находящегося в мишени, близка к 100 %. Отсюда следует, что фоновый эффект генерации $^{12}\text{C}(n,p)^{12}\text{B}$ фотонейтронами в пластиковом сцинтилляционном детекторе примерно равен эффекту из реакции (1) в 100 г углерода в мишени. Таким образом, расчет подтверждает вывод, в частности, в [6], что органический сцинтиллятор,

Рис. 10. Плотность потока быстрых нейтронов в сцинтилляционном детекторе в расчете на 1 мкКл электронного импульса

Рис. 11. Спектр γ -квантов в детекторе от распада ¹²В, образованного в центре мишени в 1 г углерода от электронного импульса 1 мкКл

скорее всего, может оказаться непригодным для фотоядерного детектирования углерода. Неорганические сцинтилляторы большой площади весьма дороги и, как показывает опыт, активируются в процессе работы.

Рис. 11 показывает γ -спектр в сцинтилляционном детекторе от распада ¹²В, образованного в центре мишени, в 1 г углерода от электронного импульса с зарядом 1 мкКл. Предлагаемый в ряде работ водяной черенковский детектор для типичных, резко падающих с энергией, спектров γ -квантов из мишени от распада ¹²В (см. рис. 11), имеет во много раз, если не на порядки, меньшую эффективность регистрации γ -квантов (пороговая энергия электронов, генерирующих черенковское излучение в воде, равна 0,26 МэВ).

7. ВЫЧИСЛЕНИЕ ФОНА ДЕТЕКТОРА ЗА СЧЕТ НЕЙТРОНОВ В ЗАЛЕ ОБЛУЧЕНИЯ

Значительно более опасен растянутый во времени после импульса фон γ -квантов от реакций радиационного захвата нейтронов, замедляющихся и «гуляющих» по залу облучения проверяемых объектов. Рис. 12 показывает временную зависимость плотностей γ - и нейтронного потоков в помещении облучения и в сцинтилляционном детекторе в расчете на 1 мкКл электронного импульса. Рассчитанный временной спад потоков определяется, как видно из графиков, плотностью нейтронного потока в помещении. Сравним интегральные по спектру потоки γ -квантов в детекторе от распада ¹²В и от фона. Суммирование γ -спектра от распада ¹²В (см. рис. 11) дает полный поток γ -квантов ($E_{\rm th} = 50$ кэВ), равный 0,075 см⁻² в расчете на 1 г углерода в центре мишени и на 1 мкКл импульса электронов. Это даст распадный временной спектр γ -потока в детекторе: $n(t) = 2,6 \cdot 10^{-3} \exp(-t/29)$ см⁻²·мс⁻¹. Эту величину следует сравнить с нижней кривой рис. 12, показывающей временной ход γ -потоков в детекторе от фона в зале облучения. В момент 10 мс после импульса отношение эффекта к фону равно $5 \cdot 10^{-5}$.

Рис. 12. Временная зависимость потоков нейтронов и γ -квантов в детекторе и помещении в расчете на 1 мкКл электронного импульса

Рис. 13. Временная зависимость потоков нейтронов и γ-квантов в помещении в расчете на 1 мкКл электронного импульса при введении дополнительной защиты детектора (в свинцовую защиту детектора введено 10% естественного лития) и поглощающих нейтроны стен зала облучения (стены зала покрыты 20-см слоем полиэтилена с 25% естественного лития): *1* — нейтроны; *2* — γ-кванты

Ситуация может быть как-то улучшена введением защиты детектора от нейтронов зала облучения и покрытием стен зала материалом, поглощающим нейтроны. Рис. 13 иллюстрирует эффект таких улучшений защиты: в свинцовую защиту детектора введено 10% естественного лития, а стены зала покрыты 20-см слоем полиэтилена с 25% есте-

126 Покотиловский Ю. Н.

ственного лития. Например, в момент 10 мс после электронного импульса плотность потоков нейтронов в помещении уменьшилась в 500 раз, а γ -квантов на четыре порядка по сравнению с тем же моментом для случая без введения защиты, временная постоянная спада интенсивности потоков при этом составляет примерно 5 мс, однако по-прежнему фон значительно превышает эффект.

Еще более радикальное подавление фона детектора достигается введением нейтронной защиты перед передней стенкой детектора (5 мм 6 LiF) и добавлением 6 Li в боковых и задней стенках защиты детектора. Рис. 14 показывает спектры нейтронов в детекторе в различные моменты времени после импульса, откуда следует, что практически полная термализация спектра в этом случае происходит уже после 0,15 мс. На рис. 15 показана временная кривая спада полного термализованного нейтронного потока в детекторе:

Рис. 14. Временная эволюция спектров нейтронов в детекторе в расчете на 1 мкКл электронного импульса при введении дополнительной защиты детектора — 5 мм ⁶LiF перед передней стенкой детектора — и увеличения защиты из ⁶Li в боковых и задней стенках защиты

Рис. 15. Временная зависимость потоков нейтронов в детекторе в расчете на 1 мкКл электронного импульса при введении дополнительной нейтронной защиты перед передней стенкой детектора (5 мм 6 LiF) и добавлением 6 Li в боковых и задней стенках защиты детектора

Моделирование фотоядерного метода детектирования скрытых взрывчатых веществ 127

константа спада равна 0,2 мс. Экстраполяция к моменту 3 мс дает уменьшение потока в детекторе на пять порядков по сравнению с незащищенным детектором с дальнейшим сильным ослаблением потоков при больших временах. Таким образом, специальные меры по защите детектора от нейтронов позволяют надеяться на выделение сигнала от углерода.

8. ДЕТЕКТИРОВАНИЕ АЗОТА

Как было отмечено, экспериментальные данные по энергетической зависимости сечений реакций (2) и (3) отсутствуют. Для оценки генерации ¹²N из реакции (2) использовались усредненные данные сечений из расчетов [12]: кривые 3 и 4 рис. 2. Для расчета генерации ¹²B из реакции (3) на азоте использовались результаты [12] и совпадающие с ними результаты [14] — кривые 2 и 3 рис. 3. Рассчитаем генерацию ¹²N и ¹²B в 1 г ТНТ ($C_7N_3O_6H_5$) в центре мишени под действием импульса электронов с зарядом 1 мкКл. Расчеты, проведенные по уравнению (4), дают следующий результат: число ядер ¹²N, образовавшихся при импульсе электронов с зарядом 1 мкКл в 1 г ТНТ в описанных условиях облучения, равно 112, а число ядер ¹²B — 8520 из реакции (1) и 149 из реакции (3). Таким образом, в общей распадной кривой, содержащей вклады от распада ¹²N с периодом полураспада 11 мс и ¹²B с периодом полураспада 20,2 мс, вклад первой составляет только 1,42%. Очевидно, что для надежного выделения распада ¹²N на фоне распада ¹²B необходима очень большая статистика даже при нулевом фоне.

ЗАКЛЮЧЕНИЕ

Впервые проведены расчеты эффективности фотоядерного метода детектирования скрытых в багаже взрывчатых материалов, основанного на использовании реакций (1)–(3):

• рассчитана эффективность регистрации углерода для 1 г углерода и 1 мкКл заряда электронов с энергией 50 МэВ в импульсе ускорителя;

• рассчитан ложный эффект из-за реакции ${}^{12}C(n,p){}^{12}B$, вызываемой фотонейтронами в сцинтилляционном пластиковом детекторе, и показано, что пластиковый детектор не может быть использован в этом методе для регистрации распадов ${}^{12}B$ в облучаемой мишени;

• детально рассчитан зависящий от времени фон нейтронов и γ -квантов, возникающий в зале облучения и в детекторе за счет генерации фотонейтронов, и показано, что без специальных мер по подавлению этого фона он превышает на порядки ожидаемый эффект от генерируемого тормозными фотонами ¹²В;

• рассчитаны фоны нейтронов и γ -квантов в детекторе после введения защиты;

• оценена генерация 12 N в THT на основе рассчитанного в работе [12] сечения реакции (2) и показано, что при таком сечении реакции (2) вклад от распада 12 N подавлен вкладом от распада 12 B;

• на основе проведенного детального моделирования приходится признать, что практическая реализация этого метода маловероятна.

Автор признателен Л. З. Джилавяну, привлекшему внимание автора к этой проблеме.

СПИСОК ЛИТЕРАТУРЫ

- 1. Alvarez L. W. Patent US 4756866. July 12, 1988.
- Rosander S., Trower W. P. // Proc. of the Indo-Soviet Seminar on Microtrons, Indore, India, 1992. ISRN KTH/ALA/PR-92/3-SE. 1992.
- 3. Trower W. P. // Nucl. Instr. Meth. B. 1993. V. 79. P. 589.
- 4. Knapp E.A., Moler R.B., Saunders A.W., Trower W.P. // Appl. Rad. Isot. 2000. V.53. P.711.
- Dzhilavyan L. Z., Karev A. I., Laptev V. D., Raevsky V. G. // Proc. of XII Intern. Seminar on Electromagnetic Interactions of Nuclei "EMIN-2009". Inst. for Nucl. Res. of Russ. Acad. of Sciences. M., 2010. P. 75.
- 6. Джилавян Л. 3. // Изв. РАН. Сер. физ. 2009. Т. 73, №6. С. 846.
- 7. Джилавян Л. З., Карев А. И., Раевский В. Г. // Изв. РАН. Сер. физ. 2011. Т. 75, № 2. С. 277.
- Карев А. И., Раевский В. Г., Джилавян Л. З., Бразерс Л. Д., Вилхайд Л. К. Патент RU № 2444003 C1. 27.02.2012. Бюл. № 6; Karev A. I., Raevsky V. G., Dzhilavyan L. Z., Brothers L. J., Wilhide L. K. Patent US 8,582,712 B2. Nov. 12, 2013.
- 9. Cook B. C. // Phys. Rev. 1957. V. 106. P. 300.
- 10. Денисов Н. П., Куликов А. В., Кульчитский Л. А. // ЖЭТФ. 1964. Т. 46. С. 1488.
- 11. Zubanov D., Sutton R.A., Thompson M.N., Jury J.W. // Phys. Rev. C. 1983. V. 27. P. 1957.
- 12. Ачаковский О. И., Белышев С. С., Джилавян Л. З., Покотиловский Ю. Н. // Изв. АН. Сер. физ. 2016. Т. 80, № 5. С. 633 (Bull. Russ. Acad. Sci. 2016. V. 80, No. 5. P. 572).
- Hunt A. W., Harmon J. F., Stoner J. // An Analysis of the VFCT Detector System. Idaho Accel. Center. Idaho State Univ. Pocatello, Idaho. P. 1–35.
- 14. *Koning A. J. et al.* TENDL-2013 Nuclear Data Library. Gamma Sub-Library. ftp://ftp.nrg.eu/pub/www/talys/tendl2013/gamma_html/gamma.html. 2013.
- 15. Джилавян Л. З., Покотиловский Ю. Н. // Письма в ЭЧАЯ. 2017. Т. 14, № 5. С. 506–513.
- 16. TALYS-1.6. http://www.talys.eu/.
- 17. Herman M. et al. EMPIRE-3.1 Rivoli. User's Manual. Feb. 8, 2012.
- 18. Kriger W. E., Kern B. D. // Phys. Rev. 1959. V. 113. P. 890.
- 19. Rimmer E. M., Fisher P. S. // Nucl. Phys. A. 1968. V. 108. P. 567.
- 20. Бобырь В. В., Применко Г. И., Ревьюк К. К. и др. // Изв. АН. Сер. физ. 1972. Т. 36. С. 2621.
- Zugec P., Colonna M., Bosnar D. et al. (n_TOF Collab.) // Phys. Rev. C. 2014. V.90. P.021601;
 Zugec P., Colonna M., Bosnar D. et al. (n_TOF Collab.) // Eur. Phys. J. A. 2016. V.52. P.101.

Получено 24 июля 2018 г.