ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

ИЗМЕРЕНИЕ СЕЧЕНИЙ ОБРАЗОВАНИЯ ИЗОТОПОВ ТРАНСФЕРМИЕВЫХ ЭЛЕМЕНТОВ В РЕАКЦИЯХ ПОЛНОГО СЛИЯНИЯ С ПОСЛЕДУЮЩИМ ИСПАРЕНИЕМ ПРОТОНА И НЕЙТРОНОВ

А. В. Еремин^{а, б, 1}, М. С. Тезекбаева^{а, в}, А. Г. Попеко^{а, б}, О. Н. Малышев^{а, б}, А. Лопез-Мартенс^г, К. Хошильд^г, О. Дорво^д, Б. Галл^д, А. В. Исаев^а, А. В. Карпов^{а, б}, А. Н. Кузнецов^а, А. А. Кузнецова^а, Ю. А. Попов^{а, б}, А. И. Свирихин^{а, б}, Е. А. Сокол^а, М. Л. Челноков^а, В. И. Чепигин^а, П. Мошат^е

> ^{*a*} Объединенный институт ядерных исследований, Дубна ^{*б*} Государственный университет «Дубна», Дубна, Россия ^{*в*} Институт ядерной физики, Алма-Ата, Республика Казахстан ^{*с*} CSNSM, IN2P3-CNRS, Орсэ, Франция ^{*д*} IPHC, IN2P3-CNRS, Страсбург, Франция ^{*е*} Университет им. Я. А. Коменского, Братислава

В ЛЯР ОИЯИ проводятся эксперименты по синтезу и изучению свойств радиоактивного распада изотопов сверхтяжелых элементов ($Z \ge 110$). В основном используются реакции полного слияния ускоренного пучка ионов ⁴⁸Са с трансактинидными мишенями с последующим испарением нескольких нейтронов из возбужденного составного ядра. Для получения более нейтроноизбыточных изотопов сверхтяжелых элементов возможно использовать «экзотические» каналы реакций с испарением протонов и нескольких нейтронов. В экспериментах на сепараторе SHELS в реакции 50 Ti + 209 Bi $\rightarrow ^{259}$ Db* были измерены сечения образования изотопов Db и Rf, образующихся в xnи pxn-каналах реакции соответственно. Соотношение сечений $\sigma(xn)/\sigma(pxn)$ составило величину порядка 100.

The experiments aimed at the synthesis and study of decay properties of the isotopes of superheavy elements ($Z \ge 110$) are performed at FLNR JINR. Generally, complete fusion reactions of accelerated ion beam of ⁴⁸Ca with transactinide targets with subsequent evaporation of a few neutrons from excited compound nucleus are used. It is possible to use "exotic" reaction channels with evaporation of protons and a few neutrons for the synthesis of more neutron-rich isotopes of superheavy elements. In the experiments with the SHELS separator, formation cross sections of Db and Rf isotopes formed in xn and pxn channels of complete fusion reaction ${}^{50}\text{Ti}+{}^{209}\text{Bi} \rightarrow {}^{259}\text{Db}^*$, respectively, have been measured. Formation cross-section ratio $\sigma(xn)/\sigma(pxn)$ is on the order of 100.

PACS 23.60.+e; 25.70Gh; 29.30.-h; 29.40.Gx

¹E-mail: eremin@jinr.ru

введение

Основным методом изучения свойств тяжелых и сверхтяжелых ядер стал синтез изотопов с использованием реакций полного слияния тяжелых ионов с тяжелыми ядрами мишеней с последующим испарением нескольких нейтронов из возбужденного компаундядра. Развитие этого направления стало возможным с началом использования экспериментальной техники, позволяющей производить сепарацию продуктов реакций полного слияния по кинематическим признакам (утловые, энергетические распределения или распределения по скорости) и по ионным зарядам [1]. Для идентификации ядер отдачи был развит метод корреляционного анализа, суть которого заключается в установлении генетически связанных цепочек распадов, ведущих в область известных ядер.

Данные экспериментов по синтезу изотопов элементов с Z от 110 до 118 [2,3] показывают, что периоды полураспада изотопов каждого из этих элементов увеличиваются с ростом числа нейтронов в ядре, что может служить косвенным подтверждением существования области относительно долгоживущих сверхтяжелых ядер вблизи сферических оболочек нейтронов и протонов. Продвижение к «острову стабильности» сверхтяжелых элементов (СТЭ) требует развития экспериментальных методов, в том числе совершенствования ускорителей, сепараторов ядер отдачи, создания высокоинтенсивных пучков ионов нейтроноизбыточных изотопов (например, 50 Ti, 54 Cr, 58 Fe, 64 Ni), нейтроноизбыточных мишеней из изотопов трансактинидных элементов, сложных детектирующих систем.

Существенным ограничением на пути к продвижению в область нейтроноизбыточных изотопов сверхтяжелых элементов является ограниченный набор доступных пучков и изотопов трансактинидных мишеней. Это послужило основанием для поиска возможностей синтеза более тяжелых изотопов СТЭ в реакциях полного слияния, имеющих «экзотические» каналы с испарением нейтронов и заряженных частиц, в основном протонов. Так, например, наиболее тяжелый изотоп элемента Mc (Z = 115), который можно синтезировать в реакции полного слияния с испарением 1 нейтрона 243 Am(48 Ca, 1n) 290 Mc, будет иметь массу 290. При этом реакция с испарением 1 нейтрона, являясь глубоко подбарьерной, будет иметь существенно меньшее сечения образования, чем успешно использовавшиеся каналы реакции 2n/3n/4n, имевшие сечения образования около 2,5, 8,5, 1 пб соответственно [4]. В реакции 248 Cm(48 Ca, pxn) $^{295-x}$ Mc возможно синтезировать изотопы 115-го элемента с массовыми номерами 291–294 в зависимости от числа испарившихся нейтронов.

В области слабоделящихся ядер максимальные значения сечений для pxn-каналов реакции находятся при больших значениях энергии возбуждения составного ядра, чем в случае xn-каналов. Так, в работе [5] для сильновозбужденного ядра 220 Ra* максимальное сечение образования было измерено для 6n испарительного канала и составило 35 мб при энергии возбуждения порядка 55 МэВ, тогда как максимальное сечение образования для pxn-канала было измерено в p8n испарительном канале и составило 2,5 мб при энергии возбуждения порядка 100 МэВ.

Расчеты показывают [6], что сечения образования изотопов СТЭ в реакциях с *pxn* испарительными каналами существенно (на один-три порядка) меньше, чем сечения образования в каналах с испарением нейтронов. В области трансфермиевых элементов экспериментальных данных по измерению сечений образования изотопов в реакциях с испарением протонов и нейтронов чрезвычайно мало (см., например, работу [7]). На рис. 1

Рис. 1. Данные из работы [7] (символы) вместе с расчетами (кривые), проведенными с использованием методики, описанной в работе [6]. Светлыми символами со стрелками показаны пределы по сечению образования, полученные для реакций ²⁴¹Pu(¹⁸O, p2n)²⁵⁶Md и ²³⁸U(²²Ne, p3n)²⁵⁶Md

приведены данные из работы [7] вместе с расчетами, проведенными с использованием методики, описанной в работе [6].

ЭКСПЕРИМЕНТ

В 2016-2017 гг. на ускорителе У-400 ЛЯР ОИЯИ были проведены эксперименты по детальному изучению свойств радиоактивного распада нейтронодефицитных изотопов Db, образующихся в реакциях полного слияния ускоренных ионов ⁵⁰Ti с ядрами мишени ²⁰⁹Ві. В экспериментах использовались мишени, которые изготавливалась путем напыления металлического Bi (слоем 0,4-0,5 мг/см²) на Al-подложку толщиной 3 мкм. Для исключения реакций ускоренных ионов 50 Ti с возможными примесями 208 Pb в веществе мишеней в экспериментах использовался очищенный ²⁰⁹Ві (содержание примесей Рь менее $1 \cdot 10^{-6}$ %). Для снижения тепловой нагрузки мишени в форме сегментов устанавливались на вращающийся диск в мишенном блоке модернизированного сепаратора ВАСИЛИСА (SHELS) [8,9]. Эффективность транспортировки ядер отдачи (ЯО) от мишени до фокальной плоскости сепаратора составляла величину 30-40 % в зависимости от настроек ионно-оптической системы сепаратора. В фокальной плоскости сепаратора располагалась комбинированная детектирующая система GABRIELA, позволяющая регистрировать α -частицы, γ -кванты, β -частицы и осколки спонтанного деления, испускаемые исследуемыми ядрами [10, 11]. После отделения от фоновых продуктов в сепараторе SHELS ядра отдачи пролетают через времяпролетную систему, состоящую из двух (старт и стоп) детекторов. Каждый детектор представляет собой тонкую эмиттерную фольгу (30-40 мкг/см², пластик) и две сборки микроканальных пластин (МКП, размер 60×90 мм) для регистрации выбитых вторичных электронов. Расположение МКП относительно фольг-эмиттеров аналогично описанному в работе [12]. ЯО затем вбиваются в фокальный кремниевый двусторонний стриповый детектор DSSD (128×128 стрипов, размер 100×100 мм, толщина 0,5 мм). Для увеличения эффективности регистрации α - и *β*-частиц, а также осколков спонтанного деления, вылетающих из фокального Si-детектора, вокруг последнего в обратной полусфере дополнительно смонтированы 8 боковых

210 Еремин А.В. и др.

стриповых детекторов (16×16 стрипов, размер 50×60 мм, толщина 0,7 мм), которые образуют «колодец» глубиной 6 см.

Германиевый детектор клеверного типа размещается максимально близко к фокальному DSSD, а боковые однокристальные германиевые детекторы — к боковым детекторам сборки [11]. Для снижения фона германиевые детекторы окружены BGO антикомптоновской защитой, что позволяет существенно снизить фон γ -квантов.

В экспериментах в качестве тестовых калибровочных реакций были использованы реакции полного слияния ${}^{50}\text{Ti} + {}^{164}\text{Dy} \rightarrow {}^{214}\text{Ra}^*$ и ${}^{50}\text{Ti} + {}^{170}\text{Er} \rightarrow {}^{220}\text{Th}^*$. На рис. 2 приведены калибровочные α -спектры, зарегистрированные DSSD в фокальной плоскости сепаратора.

Калибровка германиевых детекторов проводилась с использованием стандартных источников $^{152}{\rm Eu}$ и $^{133}{\rm Ba}.$

Рис. 2. Калибровочные α -спектры тестовых реакций: *a*) α -спектр для реакции ⁵⁰Ti + ¹⁶⁴Dy \rightarrow ²¹⁴Ra*; δ) α -спектр для реакции ⁵⁰Ti + ¹⁷⁰Er \rightarrow ²²⁰Th*. Энергетическое разрешение составляет величину порядка 20 кэВ

Пучок ⁵⁰Ті выводился из ускорителя У-400 со средними энергиями 255, 265 и 275 МэВ (энергии пучка налетающих частиц в середине мишени 238, 248, 258 МэВ соответственно). В нашем случае точность определения энергии пучка составляет величину порядка $\pm 1,5\%$ (точность измерения + долговременная нестабильность). Это приводит к неопределенности в нахождении энергии ускоренных частиц и, соответственно, положения максимума функции возбуждения на величину порядка 3 МэВ (для данного энергетического диапазона ускоренных ионов). Реакции «холодного» слияния имеют узкие функции возбуждения (ПШПВ порядка 5 МэВ), поэтому изменение энергии пучка на величину 2–3 МэВ приводит к изменению сечения образования в 2–3 раза.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В реакции ${}^{50}\text{Ti} + {}^{209}\text{Bi} \rightarrow {}^{259}\text{Db}^*$ после испарения компаунд-ядром от одного до трех нейтронов образуются изотопы ${}^{256-258}\text{Db}$, в основном испытывающие α -распад и имеющие периоды полураспада около 1 с [13]. Изотопы ${}^{256,258}\text{Rf}$, образующиеся в p2n- и p0n-каналах реакции, в основном испытывают спонтанное деление (SF) и имеют очень короткие периоды полураспада. Для изотопа ${}^{256}\text{Rf}$ измеренный период полураспада составляет величину ($6,2\pm0,2$) мс [14] и ($5,75\pm0,17$) мс [15], для изотопа ${}^{258}\text{Rf}$ эта величина ($13,0\pm3,0$) мс [16] и $14,7{}^{+1,2}_{-1,0}$ мс [17] соответственно. В случае, если эти изотопы образуются в результате электронного захвата (ЕС) изотопов ${}^{256,258}\text{Db}$, время корреляции ЯО–SF будет составлять величину порядка 1 с. Сложнее обстоят дела с идентификацией распадов изотопа ${}^{257}\text{Rf}$ (p1n-канал), так как энергии α -распада и периоды полураспада близки к величинам, характерным для изотопов ${}^{256,257,258}\text{Db}$.

В табл. 1 представлены данные для различного вида $\alpha - \alpha$ -корреляций (материнское – дочернее ядро), соответствующих образованию ядер отдачи после испарения нейтронов, а также для событий быстрого деления (временной интервал ЯО–SF не более 100 мс). Для всех событий спонтанного деления в совпадении были зарегистрированы от одного до нескольких γ -квантов и/или событие в боковом детекторе (одновременная регистрация двух осколков спонтанного деления). Всего было найдено 3 события быстрого деления при энергии пучка ⁵⁰Ti 265 МэВ. Период полураспада для этих событий составил вели-

Энергия пучка, МэВ	Инте- гральный поток ионов	256 Db $^{-252}$ Lr $(3n)$	257 Db $^{-253}$ Lr $(2n)$	258 Db $^{-254}$ Lr $(1n)$	Быстрое деление (Ge/боковые детекторы)	$T_{1/2}$, мс	σ, пб
255	$6,8 \cdot 10^{17}$	0	142	5	0		Менее $6, 6^{+15}_{-6}$
265	$2{,}1\cdot10^{18}$	28	18	2	3(2/1)	12^{+16}_{-4}	$5,7^{+17}_{-3}$
275	$7,1 \cdot 10^{17}$	1	2	0	0		Менее $4,9^{+11}_{-4}$

Таблица 1. Статистика по корреляциям $\alpha - \alpha$ (материнское – дочернее ядро) и ядро отдачи – быстрое деление

Рис. 3. Линиями показаны теоретические расчеты функций возбуждения для поперечных сечений образования изотопов ^{259-x}Db и ^{258-x}Rf в *xn*- и *pxn*-каналах реакции ⁵⁰Ti + ²⁰⁹Bi. Экспериментально измеренные значения для разных каналов обозначены символами

чину 12⁺¹⁶₋₄ мс. Наиболее вероятно, что найденные события соответствуют изотопу ²⁵⁸Rf (p0n-канал). Определенная в работе [17] вероятность α -распада для изотопа ²⁵⁸Rf составляет величину 0,31±0,11. С учетом существенной разницы в эффективности регистрации для корреляций типа ЯО–SF (близко к 100%) и ЯО– α – α (около 25%) отсутствие корреляций типа ЯО \rightarrow ²⁵⁸Rf \rightarrow ²⁵⁴No не противоречит полученным результатам — 3 корреляции ЯО–SF.

На рис. 3 представлены экспериментально измеренные сечения образования изотопов Db и Rf в xn- и pxn-каналах реакции ${}^{50}\text{Ti} + {}^{209}\text{Bi} \rightarrow {}^{259}\text{Db}^*$. При энергии ускоренных ионов 248 МэВ (в середине мишени) сечение образования ${}^{258}\text{Rf}$ (p0n-канал) составило величину 5,7 пб, измеренное сечение образования ${}^{257}\text{Db}$ (2n-канал) при этой энергии пучка составило величину порядка 600 пб. Соотношение сечений образования между xn- и pxn-каналами составляет величину порядка 100. В случае 3n испарительного канала измеренное сечение образования ${}^{256}\text{Db}$ при этой энергии пучка составило величину порядка 1,2 нб, соответственно, соотношение сечений образования между xnи pxn-каналами составит величину порядка 200.

Так как в p0n- и p2n-каналах реакции ⁵⁰Ti + ²⁰⁹Bi \rightarrow ²⁵⁹Db^{*} образуются изотопы ^{256,258}Rf, то детальное изучение свойств их радиоактивного распада имеет большое значение. В экспериментах на сепараторе SHELS при исследовании реакции полного слияния ⁵⁰Ti + ²⁰⁸Pb \rightarrow ²⁵⁸Rf^{*} были уточнены свойства распада изотопа ²⁵⁶Rf. Зарегистрировано 9 событий типа ЯО- α - α (табл. 2). Определен период полураспада полученных коррелированных событий $T_{1/2} = (5,7 \pm 1,2)$ мс. Также был проведен корреляционный анализ ЯО-осколок спонтанного деления. Всего найдено 6270 таких событий в совпадении с γ -квантами. Период полураспада для спонтанного деления ²⁵⁶Rf составил ($6,9 \pm 0,23$) мс. Вероятность α -распада b_{α} для изотопа ²⁵⁶Rf составляет 0,29%, а вероятность спонтанного деления 99,71%.

Изотоп ²⁵⁸Rf может быть синтезирован в реакциях «горячего» слияния ²⁶Mg+²³⁸U \rightarrow ²⁵⁸Rf+6n [17], ²²Ne+²⁴²Pu \rightarrow ²⁵⁸Rf+6n, ¹⁶O+²⁴⁶Cm \rightarrow ²⁵⁸Rf+4n [16] или в реакции «холодного» слияния ⁵⁰Ti + ²⁰⁹Bi \rightarrow ²⁵⁸Db + 1n \rightarrow (EC) ²⁵⁸Rf [18] в результате «электронного захвата» изотопа ²⁵⁸Db. Приведенные в работах [17, 18] данные для распада

Измерение сечений образования изотопов трансфермиевых элементов 213

$E_{\rm HO}$, кэВ	ΔT (ЯО- α_1), мс	$E_{\alpha 1}$, кэВ	$\Delta T (\alpha_1 - \alpha_2), c$	$E_{\alpha 2}$, кэВ
10810	12,57	8793	2,585	8418
8148	6,79	8780	2,456	8417
9738	8,078	8789	3,703	8412
8910	0,3	8749	2,226	8417
9402	29,87	8790	6,614	8420
11 540	0,134	8726	5,027	8377
9330	3,424	8781	3,369	8405
9120	9,185	8798	3,505	8415
10795	0,981	8794	1,904	8411

Таблица 2. Статистика по корреляциям ЯО $-\alpha-\alpha$ (ядро отдачи-материнское-дочернее ядро) для распада изотопа ²⁵⁶ Rf

изотопа ²⁵⁸Rf близки и составляют следующие значения: $E_{\alpha} = 9,05$ МэВ, $b_{\alpha} = 0,31$ [17] и $E_{\alpha} = 9,054$ МэВ, $b_{\alpha} = 0,33$ [18].

ЗАКЛЮЧЕНИЕ

Полученные результаты дают основание планировать эксперименты по синтезу новых нейтроноизбыточных изотопов сверхтяжелых элементов, поскольку недавние расчеты сечений образования для каналов с испусканием протонов, приводящих к изотопам элементов с Z = 111-117, дают сечения каналов p2n в 30–100 раз меньше, чем для 3n испарительного канала [19]. В этом случае возможно проведение исследований экзотических каналов образования изотопов в области СТЭ на новом ускорителе DC-280 (фабрика СТЭ ЛЯР ОИЯИ), ток пучка которого будет примерно в 10 раз больше, чем на работающем циклотроне У-400.

Следует отметить, что расчеты показывают значительное уменьшение различий в сечениях образования между xn- и pxn-каналами при увеличении энергии возбуждения компаунд-ядра. Из наших ранних работ [5] известно, что в области слабоделящихся ядер ($Z \leq 90$) максимальные значения сечений образования для pxn-каналов находятся при больших значениях энергии возбуждения составного ядра, чем в случае xn-каналов. В этом случае, с использованием реакций с испарением протонов, становится возможным изучение детальных свойств распада (α -, β -, γ -спектроскопия) более нейтроноизбыточных изотопов.

Работа выполнена при финансовой поддержке РФФИ (гранты № 17-02-00867 и № 18-52-15004) и Французского национального агентства исследований (гранты ANR-06-BLAN-0034-01 и ANR-12-BS05-0013).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Еремин А. В., Попеко А. Г.* Сепарация и идентификация продуктов реакций полного слияния, дальнейшее развитие методов (определение массы тяжелых ядер) // ЭЧАЯ. 2004. Т. 35, вып. 4. С. 895–927.
- 2. Hofmann S. The Discovery of Elements 107 to 112 // Europhys. J. WOC. 2016. V. 131. P. 06001.

- 214 Еремин А.В. и др.
 - Oganessian Yu. Ts., Utyonkov V. K. Superheavy Nuclei from ⁴⁸Ca-Induced Reactions // Nucl. Phys. A. 2015. V.944. P. 62–98.
 - 4. *Oganessian Yu. Ts. et al.* Investigation of the ²⁴³Am + ⁴⁸Ca Reaction Products Previously Observed in the Experiments on Elements 113, 115, and 117 // Phys. Rev. C. 2013. V. 87. P. 014302.
 - Andreyev A. N. et al. Decay Widths of Highly Excited Ra Compound Nuclei // Nucl. Phys. A. 1997. V. 620. P. 229–248.
 - 6. Karpov A. V., Denikin A. S., Zagrebaev V. I., Alekseev A. P. Statistical Model Code of NRV. http://nrv.jinr.ru/.
 - 7. Друин В.А., Лобанов Ю.Б., Сагайдак Р. Н. и др. // Междунар. шк.-семинар по физике тяжелых ионов, Алушта, 1983. С. 52.
 - Еремин А. В. и др. Первые экспериментальные тесты модернизированного сепаратора ВАСИ-ЛИСА // Письма в ЭЧАЯ. 2015. Т. 12, вып. 1. С. 35–42.
 - Еремин А. В. и др. Экспериментальные тесты модернизированного сепаратора ВАСИЛИСА (SHELS) с использованием ускоренных ионов ⁵⁰Ti // Письма в ЭЧАЯ. 2015. Т. 12, вып. 1. С. 43–47.
- 10. *Hauschild K. et al.* GABRIELA: A New Detector Array for Gamma-Ray and Conversion Electron Spectroscopy of Transfermium Elements // Nucl. Instr. Meth. A. 2006. V. 560. P. 388–394.
- 11. Yeremin A. V. et al. Spectroscopy of Transfermium Elements in Dubna: Results and Plans // VIII Intern. Symp. on Exotic Nuclei "EXON 2016", Kazan, Russia, Sept. 5–10, 2016. P. 397–403.
- Andreyev A. N. et al. Large Area High-Efficiency Time-of-Flight System for Detection of Low Energy Heavy Evaporation Residues at Electrostatic Separator VASSILISSA // Nucl. Instr. Meth. A. 1995. V. 364. P. 342–348.
- Hessberger F. P. et al. Decay Properties of Neutron-Deficient Isotopes ^{256,257}Db, ²⁵⁵Rf, ^{252,253}Lr // Eur. Phys. J. A. 2001. V. 12. P. 57–67.
- Hessberger F. P. et al. Spontaneous Fission and Alpha-Decay Properties of Neutron Deficient Isotopes ^{257–253}104 and ²⁵⁸106 // Z. Phys. A. 1997. V. 359. P.415–425.
- Svirikhin A. I. et al. Spontaneous Fission of ²⁵⁶Rf, New Data // Phys. Part. Nucl. Lett. 2016. V. 13, No.4. P. 480–482.
- Somerville L. P. et al. Spontaneous Fission of Rutherfordium Isotopes // Phys. Rev. C. 1985. V. 31. P. 1801–1815.
- Gates J. M. et al. Synthesis of Rutherfordium Isotopes in the ²³⁸U(²⁶Mg, xn)^{264-x}Rf Reaction and Study of Their Decay Properties // Phys. Rev. C. 2008. V.77. P.034603.
- 18. Hessberger F. P. et al. Investigation of Electron Capture Decay of 258 Db and α Decay of 258 Rf // Eur. Phys. J. A. 2016. V. 52. P. 328.
- 19. Hong J. et al. Ways to Produce New Superheavy Isotopes with Z = 111-117 in Charged Particle Evaporation Channels // Phys. Lett. B. 2017. V. 764. P. 42–48.

Получено 29 ноября 2018 г.