ЛИНЕЙНЫЙ УСКОРИТЕЛЬ ЛЕГКИХ ИОНОВ ДЛЯ ПРОЕКТА NICA

А. М. Базанов^а, А. В. Бутенко^а, Б. В. Головенский^а, Д. Е. Донец^а, В. В. Кобец^а, А. Д. Коваленко^а, А. И. Говоров^а, К. А. Левтеров^а, Д. А. Люосев^а, А. А. Мартынов^{а, 1}, В. А. Мончинский^а, В. В. Мялковский^а, Д. О. Понкин^а, К. В. Шевченко^а, А. О. Сидорин^а, И. В. Шириков^а, Е. М. Сыресин^а, Х. Хольтерманн⁶, М. Бастен⁶, Б. Коубек⁶, Х. Подлех⁶, У. Ратцингер⁶, А. Шемпп⁶, Р. Тиде⁶

> ^{*а*} Объединенный институт ядерных исследований, Дубна ^{*б*} ООО Bevatech, Франкфурт-на-Майне, Германия

В рамках реализации проекта NICA в ОИЯИ специалистами из ОИЯИ (Дубна) и Bevatech GmbH (Франкфурт-на-Майне, ФРГ) ведется создание нового линейного ускорителя — инжектора легких ионов. В работе представлены результаты проектирования резонаторов и расчетов динамики пучка в ускорителе.

With the realization of the NICA project, a joint team from JINR (Dubna) and Bevatech GmbH (Frankfurt-am-Main, Germany) is now realizing the new light ion linac LILac. The results of beam dynamics and conceptual design are discussed in this article.

PACS: 29.20.db; 29.27.Ac; 29.27.Bd

введение

В Объединенном институте ядерных исследований в рамках реализации проекта NICA [1] ведется модернизация инжекционного комплекса синхротрона нуклотрона. Ускоритель ЛУ-20 со структурой типа Альвареца, находящийся в эксплуатации с 1974 г. и неоднократно модернизированный [2], будет заменен на новый линейный ускоритель легких ионов LILac (Light Ion Linear accelerator, рис. 1).

Новый инжектор на основе LILac будет состоять из следующих основных частей: канала транспортировки пучков низких энергий LEBT (Low-energy beam transfer), ускорителя с пространственно-однородной квадрупольной фокусировкой RFQ (Radio-frequency quadrupole), двух ускоряющих структур на H-волне IH-1 и IH-2 (Interdigital H-mode Drift-Tube-Linac) — и рассчитан на конечную энергию 7 МэВ/нуклон. Из IH-2 пучок с помощью поворотного магнита (отмечен синим на рис. 1) направляется в канал инжекции в нуклотрон. SPI — источник поляризованных ионов [3]. В дальнейшем планируется увеличение количества секций линейного ускорителя добавлением резонаторов с нормальной проводимостью, ускоряющих пучок до 13 МэВ/нуклон

¹E-mail: martynovaa@jinr.ru

Рис. 1 (цветной в электронной версии). Схема ускорителя LILac

(отмечены салатовым цветом, IH-3), и сверхпроводящих полуволновых резонаторов (отмечены голубым, HWR2 и HWR1) до конечной энергии 50 МэВ/нуклон для прикладных исследований на выведенных пучках [4].

LEBT

Назначением канала LEBT является инжекция в RFQ пучков поляризованных протонов (p^+) и дейтронов (D^+) от источника SPI и легких ионов от лазерного источника с энергией 25 кэВ/нуклон. Параметры пучков от источника SPI на входе в канал представлены в табл. 1.

Параметр	Значение
Ток пучка, мА	10
Энергия на выходе источника:	
p^+ , кэВ	25
D^+ , кэ $B/$ нуклон	12,5
Нормализованный эмиттанс на выходе источника, мм мрад	0,3
Разброс энергии на выходе источника $\left(p^+ ight)$	$\Delta W/W < \pm 10^{-3}$

Таблица 1. Параметры пучка на входе в канал LEBT

Пучки ионов в канале LEBT ускоряются электростатической трубкой с максимальным импульсным напряжением ~ 100 кВ (рис. 2).

Фокусировка пучков на вход RFQ осуществляется магнитным полем, создаваемым двумя соленоидами (рис. 3). Максимальная величина магнитного поля на оси каждого соленоида составляет $\sim 1,2$ Тл.

Для выбора оптимального расположения соленоидов проводилось моделирование динамики пучка программой TraceWin [6], в которую была экспортирована карта электромагнитных полей, выполненная в пакете CST MWS Studio [5]. Моделирование показало, что при конфигурации канала, представленной на рис. 3, потери частиц p^+ и D^+ для пучков с током до 10 мА отсутствуют. При ускорении наблюдается незначительный рост эмиттанса — не более 6–10%. Полная длина оптимизированного канала составляет 1,007 м.

Рис. 2. Электростатическая ускоряющая трубка

Рис. З. Канал LEBT

Таблица 2. Параметры Твисса для канала LEBT

Параметр	Дейтерий D^+	Поляризованные p^+	«Фоновые» p^+
Нормализованный эмиттанс			
пучка, мм•мрад	0,3	0,3	0,3
$lpha_x$	-0,1495	0,617	0,2082
eta_x , мм·мрад	0,0963	0,0859	0,1044
$lpha_y$	-0,0524	0,1482	0,7888
eta_y , мм·мрад	0,2338	0,0485	0,0825
Ток пучка, мА	10	10	10

Параметры пучков на выходе LEBT, представленные в табл. 2, являются исходными данными при проектировании RFQ.

УСКОРЯЮЩАЯ СЕКЦИЯ RFQ

RFQ (Radio-Frequency Quadrupole, ускоритель с пространственно-однородной квадрупольной фокусировкой) является предускорителем для последующей секции линейного ускорителя и представляет собой резонатор, нагруженный четырьмя электродами-стержнями (4-rod resonator, рис. 4) с длиной каждого 2419,7 мм, установ-

Рис. 4. Электроды RFQ

Таблица 3. Параметры RFQ

Параметр	Значение
Входной эмиттанс, мм мрад	$0,3\pi$
Входная энергия, кэВ/нуклон	25
Выходная энергия, кэВ/нуклон	600
Отношение заряда частиц к массе A/Z	3

ленных на 26 опорах, с зазорами между электродом и входом/выходом из резонатора 10 мм, толщиной стенок резонатора 40 мм. Полная длина резонатора составляет 2519,7 мм. Параметры RFQ приведены в табл. 3.

При проектировании RFQ ставилась задача оптимизации длины ускорителя, входной энергии пучков и мощности BЧ-генератора, а также получения на выходе RFQ пучков с минимальным продольным эмиттансом, что важно для последующих секций DTL. Поскольку пучки ионов от источника SPI приобретают энергию после прохождения вытягивающего напряжения 25 кэВ, то энергия на входе в ускоритель была принята равной минимальному значению 25 кэВ/нуклон, при котором пучок протонов инжектируется в RFQ без дополнительного ускорения. Для инжекции в RFQ пучков дейтронов необходимо будет подать на ускоряющую трубку потенциал 12,5 кВ. Максимальное напряжение, подаваемое на трубку, будет составлять ~ 75 кВ при ускорении ионов с A/Z = 3 от лазерного источника.

Моделирование динамики пучков p^+ и D^+ в RFQ производилось с использованием кода TUTATIS. По результатам моделирования был выбран дизайн RFQ с бо-

Параметр	Значение
Входная энергия, кэВ/нуклон	25
Входной эмиттанс ε_n , rms, xy , мм \cdot мрад	0,3
Выходной эмиттанс $arepsilon_n,$ rms, $xy,$ мм \cdot мрад	0,3
Выходной эмиттанс $arepsilon_n$, rms, z , МэВ \cdot град	0,14
Разброс энергий (при 15 мА, $A/Z = 3$), %	1,8
Прохождение пучка, %	88
Количество ВЧ-ячеек	193
Длина электродов, мм	2419,7
Число опор электродов	24

Таблица 4. Различные параметры конструкции RFQ

Рис. 5. Выходной эмиттанс пучка и коэффициент трансмиссии как функция тока пучка на входе в резонатор

Рис. 6. Разброс по координатам x (a) и y (b), фазовый (s) и энергетический (z) разбросы в резонаторе RFQ для пучка частиц с A/Z = 3 и током 15 мA, что соответствует току 5 мA пучка протонов

лее длинными электродами, обеспечивающий лучший продольный эмиттанс при сохранении того же продольного эмиттанса, что и для варианта с более короткими электродами, и удовлетворительным коэффициентом трансмиссии для пучка 15 мА (табл. 4). Потери ВЧ-мощности в резонаторе оцениваются в 192 кВт при шунтовом сопротивлении 80 кОм, нагрузка пучком 15 мА с A/Z = 3 составляет 27 кВт. С целью обеспечения запаса по мощности и надежности работы питание RFQ будет осуществляться высокочастотным импульсным усилителем на 300 кВт. Поперечный эмиттанс пучка на выходе RFQ остается равным входному $0,3\pi$ мм мрад и фактически не зависит от тока пучка, продольный эмиттанс для токов выше 15 мА также остается практически постоянным $\sim 0,13$ МэВ град, а коэффициент трансмиссии составляет $\sim 80\%$ при токе 15 мА (рис. 5).

На рис. 6 показаны профили пучка по осям X и Y (рис. *a*, *б*), разброс по фазам (рис. *в*) и разброс по энергиям (рис. *г*) как функция числа пройденных пучком ячеек ускоряющей структуры резонатора. Полное число ВЧ-ячеек в резонаторе — 193.

УСКОРЯЮЩИЕ СЕКЦИИ С ТРУБКАМИ ДРЕЙФА ІН-1 И ІН-2

Ускорение пучка от выходной энергии 600 кэВ/нуклон после секции RFQ до энергии инжекции в нуклотрон 7 МэВ/нуклон происходит в двух секциях IH-1 и IH-2 с ускоряющей структурой типа KONUS (рис. 7). KONUS (от немецкого Kombinierte Null Grad Struktur — KONUS) представляет собой $\beta\lambda/2$ ускоряющую структуру с трубками дрейфа, размещенную в H-резонаторе. Основное ускорение происходит в части структуры с нулевой синхронной фазой, поперечная фокусировка осуществляется как высокочастотным полем, так и триплетами и дублетами квадрупольных линз, а для продольной фокусировки используются несколько группирующих зазоров с отрицательной синхронной фазой ~ -40° . Подробнее о структуре KONUS можно узнать, например, в работе [7].

Моделирование динамики частиц для определения параметров ускоряющих секций KONUS осуществлялось с использованием кода LORASR [8]. По результатам моделирования были определены количество и места расположения триплетов квадрупольных линз, а также число зазоров с нулевой и отрицательной фазами (табл. 5). В первой секции IH-1 будут размещены два триплета, во второй секции IH-2 — один триплет, и по одному триплету будет расположено между резонаторами и на выходе ускорителя (см. рис. 7).

Расчетная потребляемая мощность для IH-резонаторов составляет 426 и 452 кВт для IH-1 и IH-2 соответственно. Для питания резонаторов будут использоваться два одинаковых твердотельных ВЧ-усилителя на 600 кВт каждый, так что запас по мощности составит примерно 30%.

Рис. 7. Структура IH-DTL. QD — дуплет квадрупольных линз; QT — триплет квадрупольных линз

Параметр	Значение				
IH-1					
Количество внутренних линз	2				
Количество ускоряющих зазоров					
с отрицательной и нулевой фазами	2+6; 3+7; 4+8				
Полное количество ускоряющих зазоров	30				
Диапазон энергий, МэВ/нуклон	0,6-4,0				
Длина резонатора, м	2,5				
IH-2					
Количество внутренних линз	1				
Количество ускоряющих зазоров					
с отрицательной и нулевой фазами	6+6; 4+8				
Полное количество ускоряющих зазоров	24				
Диапазон энергий, МэВ/нуклон	4,0-7,0				
Длина резонатора, м	2,8				
LILac DTL (MEBT + IH-1 + IH-2 + дебанчер)					
Общая длина от выхода RFQ					
до выхода IH-2, м	6,4				
Общая длина от выхода RFQ					
до выхода дебанчера, м	9,8				
Параметры пучка в ускорителе	На выходе RFQ	На выходе IH-DTL			
Поперечный 98%-й эмиттанс, норм., мм · мрад	1,7	2,2			
Поперечный rms эмиттанс, мм · мрад	0,29	0,34			
Продольный 98%-й эмиттанс, кэВ/нуклон нс	6,7	13			
Продольный rms эмиттанс, кэВ/нуклон·нс	0,8	1,1			
Прохождение пучка (MEBT+IH-DTL), %	98				

Таблица 5. Параметры IH-DTL

IH-DTL 3

Развитие проекта предполагает создание еще одной ускоряющей секции IH-3, которая предназначена для повышения энергии пучка с 7 до 13 МэВ/нуклон. Она содержит 11 зазоров с напряженностью поля до 8,3 МВ/м. Шунтовое сопротивление структуры уменьшается по мере роста скорости пучка, длина структуры составляет 1,2 м. Коэффициент Киллпатрика для третьего резонатора IH составляет 1,35. В отличие от IH-1 и IH-2 в IH-3 отсутствуют фокусирующие линзы внутри резонатора. Огибающие пучка в ускорителе представлены на рис. 8.

Расчеты выполнены для 5-мА пучка протонов. Прохождение составляет > 99%. Портрет пучка после ускорения до 13 МэВ/нуклон представлен на рис. 9. В приведенный эллиптический фазовый портрет попадает 98% частиц. Питание резонатора будет осуществляться твердотельным ВЧ-усилителем на 400 кВт.

После секции IH-3 необходим дебанчер для обеспечения малого разброса пучка по энергиям при инжекции в нуклотрон. В дальнейшем дебанчер будет служить для согласования продольного фазового портрета пучка при инжекции в сверхпроводящие секции ускорителя.

Рис. 9. Фазовые портреты пучка на выходе дебанчера (после IH-3)

ЗАКЛЮЧЕНИЕ

Все расчетные работы по структуре ускорителя выполнены. Идет поиск поставщиков ВЧ-усилителей для питания резонаторов, а чертежи деталей ускорителя отданы в производство. Первые испытания ускорителя на пучке и ввод в эксплуатацию запланированы на 2022 г. В дальнейшем за третьей ускоряющей секцией планируется установка сверхпроводящих ускоряющих секций, работа над которыми ведется коллаборацией ОИЯИ, МИФИ (Москва), ФТИ (Минск) и БГУ (Минск).

СПИСОК ЛИТЕРАТУРЫ

- Trubnikov G., Agapov N., Alexandrov V. et al. Project of the Nuclotron-Based Ion Collider Facility (NICA) at JINR // Proc. of the Intern. Particle Accelerator Conf. "IPAC'2010", 2010. P. 693.
- Gusarova M. A. et al. Research and Design of a New RFQ Injector for Modernization of the LU-20 Drift-Tube Linac // Phys. Part. Nucl. Lett. 2016. V. 13, No. 7. P. 915–918.
- 3. *Fimushkin V., Kovalenko A., Belov A. et al.* SPI for the JINR Accelerator Complex // Proc. of the Intern. Workshop on Polarized Sources, Targets and Polarimetry "PSTP 2015", 2015. P. 041.

- Polozov S. M. et al. Status of R&D on New Superconducting Injector Linac for Nuclotron-NICA // Proc. of the 61st ICFA ABDW on High-Intensity and High-Brightness Hadron Beams (HB'18), Daejeon, Korea, June 2018. P. 83–87.
- 5. https://www.cst.com/products/cstmws
- 6. http://irfu.cea.fr/en/Phocea/Page/index.php?id=780
- Tiede R., Ratzinger U., Podlech H., Zhang C. KONUS Beam Dynamics Designs Using H-Mode Cavities // Proc. of Conf. "Hadron Beam", Nashville, Tennessee, USA, 2008. WGB11. P. 223–230.
- 8. *Tiede R. et al.* Improvements of the LORASR Code and Their Impact on Current Beam Dynamics Designs // Proc. of the 2014 LINAC Conf., Geneva, Switzerland, 2014. P. 569.