ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

# МОДЕЛИРОВАНИЕ ПОДКРИТИЧЕСКОЙ СИСТЕМЫ, УПРАВЛЯЕМОЙ УСКОРИТЕЛЕМ С РАЗЛИЧНЫМИ МИШЕНЯМИ РАСЩЕПЛЕНИЯ

А. И. Дубровский<sup>а, 1</sup>, А. И. Киевицкая<sup>а</sup>, С. И. Тютюнников<sup>б</sup>

<sup>а</sup> Международный государственный экологический институт им. А. Д. Сахарова Белорусского государственного университета, Минск

<sup>6</sup> Объединенный институт ядерных исследований, Дубна

Для планирования экспериментальных исследований в ОИЯИ (Дубна), направленных на трансмутацию радиоактивных отходов, проведены расчеты нейтронно-физических характеристик большой урановой мишени. Рассмотрено несколько гомогенных и комбинированная уранбериллиевая мишень расщепления, которые могут быть использованы в качестве вставок в урановый бланкет для достижения оптимального нейтронного спектра и эффективного выжигания долгоживущих продуктов деления и минор-актинидов.

A number of neutronics of JINR big uranium target are simulated towards the planning of experimental investigations aimed at transmutation of radioactive waste. Several homogeneous spallation targets and uranium-beryllium combined one are considered to obtain an optimal neutron energy spectrum for effective burning of long-lived fission products and minor-actinides.

PACS: 24.10.Lx; 28.65.+a; 29.27.-a

### введение

В настоящее время электроядерные подкритические установки, управляемые сильноточными ускорителями (ADS — Accelerator Driven Systems), рассматриваются в качестве перспективных систем для трансмутации отработавшего ядерного топлива и производства энергии. Использование ускорителя в качестве внешнего источника делает такие системы безопасными и простыми с точки зрения управления критичностью. Одним из основных компонентов ADS является мишень, которая под действием пучка заряженных частиц генерирует нейтроны расщепления, которые, в свою очередь, инициируют цепную реакцию деления. Существенным преимуществом таких систем является также возможность использования природного урана в качестве ядерного топлива.

Планирование экспериментальных исследований на подкритической системе требует предварительных расчетов ее основных параметров, таких как выход нейтронов,

<sup>&</sup>lt;sup>1</sup>E-mail: a1dubrovskii@gmail.com

энергетические спектры, энерговыделение, активация мишени и образование долгоживущих осколков деления. Для этого могут быть использованы современные программы, реализующие метод Монте-Карло для моделирования переноса излучений и адрон-ядерных взаимодействий в широком энергетическом диапазоне.

Данная работа является продолжением статьи «Моделирование нейтронно-физических характеристик подкритической системы, управляемой ускорителем заряженных частиц высоких энергий» [1].

#### 1. АНАЛИЗ ФИЗИЧЕСКИХ МОДЕЛЕЙ

В настоящей работе продолжены расчеты по коду Geant4 версии 10.5 на четырехъядерном процессоре Intel Core i7-6700 с тактовой частотой 3,4 ГГц и 8 Гб оперативной памяти в многопоточном режиме с использованием стандартных физических моделей, наиболее подходящих для решения поставленной задачи: Intra-Nuclear Cascade Liége (QGSP\_INCLXX\_HP), Bertini Cascade (QGSP\_BERT\_HP) и Binary Intranuclear Cascade (QGSP\_BIC\_HP), со стандартной испарительной моделью G4ExcitationHandler и с альтернативной моделью ABLA [2].

В табл. 1 приведены в сравнении интегральные данные по выходу нейтронов из тяжелых мишеней, полученные экспериментально и рассчитанные методом Монте-Карло с использованием различных кодов. Модель QGSP\_BIC\_HP показывает хорошую сходимость с экспериментом по выходу нейтронов из тяжелых мишеней.

| Мишень                           | Энергия<br>пучка,<br>ГэВ | Экспе-<br>римент,<br>BNL [3] | Geant4, BIC [1]       | SONET [4]            | MCNPX [5]           | LAHET<br>[6] |
|----------------------------------|--------------------------|------------------------------|-----------------------|----------------------|---------------------|--------------|
| Рb,<br>D = 10,2 см,<br>H = 61 см | 0,8                      | $13{,}60\pm0{,}20$           | $14,\!430\pm0,\!008$  | $15,\!00\pm0,\!35$   | $14,\!45\pm0,\!2$   | 14,96        |
|                                  | 1,0                      | $17,\!38\pm0,\!20$           | $18,\!440\pm0,\!009$  | $16,\!90\pm0,\!35$   | $18,\!64\pm\!0,\!2$ | 19,82        |
|                                  | 1,2                      | $22,\!31\pm0,\!30$           | $21,\!742\pm 0,\!009$ | $23,\!30\pm0,\!40$   | $23,\!20\pm0,\!2$   | 24,25        |
|                                  | 1,4                      | $26,\!21\pm0,\!45$           | $24,\!903\pm0,\!010$  | $26,\!10\pm0,\!30$   | $27,\!09\pm0,\!3$   | 28,26        |
| W,<br>D = 10,2 см,<br>H = 40 см  | 0,8                      | $15,\!11\pm0,\!11$           | $15,\!341\pm0,\!008$  | $16{,}60\pm0{,}90$   | $17,\!25\pm1,\!0$   | 17,47        |
|                                  | 1,0                      | $20,\!40\pm0,\!15$           | $19,\!691\pm0,\!009$  | $21,\!70\pm0,\!80$   | $22,\!58\pm1,\!0$   | 23,22        |
|                                  | 1,2                      | —                            | $23,\!606\pm 0,\!010$ | $26{,}90 \pm 1{,}40$ | $28,\!54\pm1,\!0$   | 28,81        |
|                                  | 1,4                      | $28,\!46\pm\!0,\!20$         | $27,\!286\pm0,\!010$  | $31,\!60\pm1,\!60$   | $31,\!85\pm1,\!2$   | 33,67        |

Таблица 1. Интегральный выход нейтронов из тяжелых мишеней

Анализ результатов по интегральному выходу нейтронов показывает, что по сравнению со свинцом из вольфрамовой мишени наблюдается на 5–10% больший нейтронный поток, несмотря на ее меньший объем и атомный номер. К тому же сечение реакций (p, fission) и (p, xn) на вольфраме в разы меньше, чем на свинце. Причиной такого различия является на 70% бо́льшая плотность вольфрама по сравнению со свинцом.

В табл. 2 представлены результаты расчета нейтронного выхода с использованием различных физических моделей. Статистическая погрешность приведенных моделей

|                                  | Энергия | Экспе-             |        |        |        |           |  |
|----------------------------------|---------|--------------------|--------|--------|--------|-----------|--|
| Мишень                           | пучка,  | римент,            | BIC    | BERT   | INCL   | INCL/ABLA |  |
|                                  | ГэВ     | BNL [3]            |        |        |        |           |  |
| Рb,<br>D = 10,2 см,<br>H = 61 см | 0,8     | $13,\!60\pm0,\!20$ | 14,678 | 16,673 | 13,551 | 15,607    |  |
|                                  | 1,0     | $17,\!38\pm0,\!20$ | 18,484 | 21,762 | 17,361 | 20,112    |  |
|                                  | 1,2     | $22,\!31\pm0,\!30$ | 21,890 | 26,148 | 20,648 | 24,064    |  |
|                                  | 1,4     | $26,\!21\pm0,\!45$ | 25,012 | 30,068 | 23,561 | 27,574    |  |
| W,<br>D = 10,2 см,<br>H = 40 см  | 0,8     | $15,\!11\pm0,\!11$ | 15,306 | 17,337 | 13,771 | 15,797    |  |
|                                  | 1,0     | $20,\!40\pm0,\!15$ | 19,621 | 22,983 | 17,869 | 20,600    |  |
|                                  | 1,2     | —                  | 23,646 | 28,087 | 21,587 | 24,996    |  |
|                                  | 1,4     | $28,\!46\pm0,\!20$ | 27,300 | 32,667 | 24,954 | 28,950    |  |

Таблица 2. Интегральный выход нейтронов из тяжелых мишеней для разных физических моделей Geant4

не превышает 1%. Модель BERT показывает наименьшее время моделирования, однако существенно (на 15–25%) завышает выход нейтронов, особенно в низкоэнергетическом диапазоне, что хорошо согласуется с данными [7]. Модели BIC и INCL со стандартной испарительной моделью и с ABLA хорошо воспроизводят экспериментальные данные.

Важно отметить, что время моделирования INCL/ABLA примерно вдвое ниже по сравнению с моделью BIC. Более того, по данным [8] применение модели INCL/ABLA дает лучшую сходимость с экспериментальными данными по образованию осколков деления урана в системе, управляемой пучком высокоэнергетических протонов.

Из рис. 1 видно, что форма энергетических спектров частиц, испущенных из свинцовой мишени, практически не зависит от энергии пучка, изменяется лишь скорость адрон-ядерных взаимодействий и суммарный выход вторичных частиц.



Рис. 1. Энергетические спектры частиц, испущенных из свинцовой мишени (модель бинарного каскада, BIC)



Рис. 2. Энергетические спектры нейтронов, испущенных из вольфрамовой и свинцовой мишеней

Таблица 3. Время моделирования 10<sup>6</sup> историй в задаче с мишенью из вольфрама в минутах

| Энергия<br>пучка, ГэВ | BIC    | BERT  | INCL  | INCL/ABLA |
|-----------------------|--------|-------|-------|-----------|
| 0,8                   | 73,06  | 17,08 | 43,70 | 42,33     |
| 1,0                   | 104,85 | 23,12 | 58,18 | 55,62     |
| 1,2                   | 131,11 | 29,28 | 71,42 | 68,41     |
| 1,4                   | 155,52 | 34,40 | 83,00 | 79,45     |

На рис. 2, 3 показано, как соотносятся между собой нейтронные спектры, полученные с использованием разных физических моделей. Для моделей INCL и BIC спектральные характеристики нейтронов расщепления различаются в пределах 25% во всем энергетическом диапазоне. Наблюдается существенное отклонение модели BERT от BIC и INCL в области низких энергий, особенно в случае свинцовой мишени. Однако если в модели INCL заменить стандартную испарительную модель на ABLA, то низкоэнергетическая часть нейтронного спектра сойдется с даваемой моделью BERT. Поэтому предполагается, что расхождения в низкоэнергетическом диапазоне нейтронных спектров, полученных с использованием различных физических моделей, главным образом обусловлены различиями в испарительной стадии взаимодействий. На сегодняшний день модель девозбуждения ABLA протестирована только в связке с INCL [1], поэтому мы не использовали ее с BIC и BERT.

С учетом сказанного выше и ввиду недостатка экспериментальных данных для обоснованного однозначного выбора физической модели все расчеты были выполнены с использованием двух моделей — INCL/ABLA и BIC.



Рис. 3. Соотношение энергетических спектров нейтронов, полученных с использованием различных физических моделей

## 2. РАСЧЕТ ХАРАКТЕРИСТИК КОМБИНИРОВАННОЙ ВСТАВКИ

Для трансмутации актинидов проблема выбора оптимального спектра все еще остается открытой. Поэтому помимо гомогенных мишеней также представляют интерес комбинированные. На рис. 4 представлена модель уран-бериллиевой мишени —



Рис. 4. Модель комбинированной уран-бериллиевой вставки



Рис. 5. Энергетические спектры нейтронов, испущенных из урановой, бериллиевой и комбинированной мишеней

результат адрон-ядерных взаимодействий, инициируемых одним протоном с энергией 2 ГэВ.

На рис.5 представлены энергетические спектры нейтронов, испущенных из урановой и бериллиевой мишеней диаметром 20 см и высотой 30 см, а также при их соосной комбинации (по модели INCL/ABLA). Для мишеней с наличием урана виден характерный подъем в области низких энергий за счет нейтронов деления. Бериллиевая составляющая поднимает высокоэнергетическую и надтепловую части спектра. Этот эффект усиливается, когда бериллий стоит первым по направлению пучка, при этом интегральный выход снижается примерно на 30%.



Рис. 6. Энерговыделение внутри урановой, бериллиевой и комбинированных мишеней

Энерговыделение в гомогенной бериллиевой мишени варьирует в пределах 10– 1000 МэВ (см. рис. 6). В районе 90 МэВ имеется ярко выраженный острый пик, положение которого соответствует энергии, выделяемой протоном, в том случае, когда он проходит по всей длине мишени. Его положение тем правее, чем толще мишень и/или чем выше ее плотность и атомный номер. Отметим также, что с ростом энергии пучка положение этого пика практически не изменяется, растет лишь его площадь, потому что с ростом энергии пучка углы рассеяния протонов становятся все меньше. Часть спектра справа от пика обусловлена энерговыделением вторичных частиц. Уменьшение диаметра мишени приводит к ее спаду и к росту левой части спектра относительно пика, так как все более вероятным становится выход протонов через боковую поверхность мишени. В таких событиях суммарное энерговыделение не превышает значения, равного положению пика, при этом чем раньше протон вышел из мишени, тем меньше энергии в ней выделяется в результате каскада.

В урановой мишени выделяется почти на порядок больше энергии, чем в бериллиевой. Кроме основного пика в районе 600 МэВ на кривой энерговыделения имеются характерные пики с дискретностью около 180–200 МэВ, что соответствует событиям однократного, двукратного и т.д. деления урана. Видно, что вероятность событий, сопровождающихся более чем четырехкратным делением урана, пренебрежимо мала. Такой характер кривой энерговыделения хорошо согласуется с данными [8].

Касаясь комбинированной мишени, отметим только, что при любой комбинации ее составляющих энерговыделение варьирует в широком диапазоне энергий вплоть до нескольких гигаэлектронвольт, в зависимости от того, по какому сценарию прошел каскад. Передняя часть мишени является доминирующей, поэтому в среднем, когда бериллий первый по направлению пучка, выделяется меньше энергии, чем когда спереди стоит урановая составляющая.

#### 3. ОПИСАНИЕ УСТАНОВКИ

Модель большой урановой мишени представляет собой цилиндрический урановый блок с внешним диаметром 120 см и высотой 100 см, в центральной части которого предусмотрено отверстие для пучка частиц диаметром 6 см на глубину 40 см от переднего торца и отверстие диаметром 20 см на оставшиеся 60 см высоты цилиндра —



Рис. 7. Модель большой урановой мишени

для вставок из различных материалов. В качестве топлива используется обедненный металлический уран с обогащением по изотопу U-235, равным 0,4%, что соответствует содержанию ядер в единице объема U-238 — 0,0471  $\cdot$  10<sup>24</sup> см<sup>-3</sup> и U-235 — 0,000189  $\cdot$  10<sup>24</sup> см<sup>-3</sup>.

На рис.7 схематически представлена упрощенная модель большой урановой мишени, разработанная на первом этапе исследований [1], и результат нейтронных взаимодействий, инициируемых одним протоном с энергией 2 ГэВ. Эта модель была модифицирована и оптимизирована для расчета нейтронно-физических характеристик системы со вставками из различных материалов.

## 4. РАСЧЕТ НЕЙТРОННО-ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК БОЛЬШОЙ УРАНОВОЙ МИШЕНИ

Из рис. 8 видно, что форма нейтронных спектров практически не зависит от материала вставки, изменяется лишь суммарное число образующихся нейтронов. Данное утверждение согласуется с выводами, полученными в работах [9–11]. Из табл. 4 видно, что чем больше атомный номер материала вставки, тем выше скорость ядерных реакций и нейтронный выход, и, конечно, для урана и тория эти показатели существенно выше за счет делений тепловыми нейтронами. Статистическая погрешность приведенных результатов не превышает 2%.

По сравнению с висмутом свинцовая вставка обладает на 17 % большей атомной плотностью, но при этом на 50 % меньшим сечением реакции (p, fission). Тем не менее нейтронный выход из свинцовой вставки без бланкета примерно на 10 % выше, так как высокоэнергетические деления в тяжелых мишенях существенного влияния на образование нейтронов не оказывают. Суммарный нейтронный поток в системе главным образом формируется в результате неупругих адрон-ядерных взаимодействий



Рис. 8. Энергетические спектры нейтронов, испущенных внутри большой урановой мишени со вставками из разных материалов

во вставке и, особенно, цепной реакции деления в бланкете. Поэтому энергетические спектры нейтронов, испущенных в большой урановой мишени для Pb- и Bi-вставок, практически совпали как по форме, так и по площади.

Для расчета нейтронно-физических характеристик большой урановой мишени было разыграно 10<sup>4</sup> историй для каждой вставки по обеим физическим моделям. Результаты моделирования показали, что в системе количественно преобладают ионизационные и упругие взаимодействия. Однако куда больший интерес представляют дискретные процессы, список которых представлен в табл. 4.

| Параметр                            |               | Вставка |        |        |        |        |        |        |        |        |
|-------------------------------------|---------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                     |               | Be      | Al     | Fe     | Pb     | Bi     | Th     | U      | BeU    | UBe    |
| Атомный номер, Z                    |               | 4       | 13     | 26     | 82     | 83     | 90     | 92     | —      | _      |
| Плотность, г/см <sup>3</sup>        |               | 1,848   | 2,699  | 7,874  | 11,35  | 9,747  | 11,72  | 18,95  | —      | -      |
| Выход<br>нейтронов                  | INCL/<br>ABLA | 29,659  | 29,577 | 37,961 | 76,764 | 75,859 | 91,975 | 136,19 | 99,384 | 127,32 |
|                                     | BIC           | 35,491  | 33,458 | 41,263 | 76,353 | 75,680 | 92,596 | 144,82 | 114,10 | 137,14 |
| Реакция<br>захвата<br>нейтронов     | INCL/<br>ABLA | 32,770  | 33,579 | 49,653 | 95,368 | 91,533 | 118,47 | 159,85 | 105,34 | 148,29 |
|                                     | BIC           | 36,925  | 35,743 | 51,768 | 94,322 | 90,501 | 117,98 | 167,15 | 116,74 | 157,91 |
| Реакция<br>(n, fission)             | INCL/<br>ABLA | 7,416   | 6,779  | 8,652  | 16,135 | 16,065 | 18,592 | 32,414 | 23,863 | 30,259 |
|                                     | BIC           | 9,001   | 7,955  | 10,040 | 17,106 | 17,043 | 19,760 | 35,822 | 28,478 | 34,164 |
| Неупругие<br>рассеяния<br>нейтронов | INCL/<br>ABLA | 160,04  | 192,84 | 291,04 | 550,17 | 532,98 | 662,93 | 903,64 | 564,50 | 801,27 |
|                                     | BIC           | 183,37  | 208,95 | 308,36 | 555,60 | 536,05 | 670,65 | 954,06 | 635,07 | 862,76 |
| Неупругие<br>рассеяния<br>протонов  | INCL/<br>ABLA | 1,568   | 1,601  | 2,176  | 1,774  | 1,727  | 1,728  | 1,798  | 2,061  | 1,768  |
|                                     | BIC           | 1,567   | 1,629  | 2,225  | 1,758  | 1,713  | 1,716  | 1,774  | 2,052  | 1,726  |
| Время<br>расчета,<br>мин            | INCL/<br>ABLA | 11,15   | 8,70   | 13,43  | 23,977 | 22,61  | 25,07  | 37,99  | 40,62  | 32,50  |

Таблица 4. Выход нейтронов и список основных процессов, протекающих в большой урановой мишени со вставками из разных материалов в расчете на один протон

Обе модели показывают схожие результаты по неупругому рассеянию протонов, чего нельзя сказать о других реакциях. Модель BIC по сравнению с INCL/ABLA систематически дает на 10–20% бо́льшую скорость нейтрон-ядерных реакций для делящихся и легких вставок.

Наблюдается на 25–40% больше неупругих рассеяний протонов в системе с железной вставкой по сравнению с остальными гомогенными мишенями, возможно, за счет реакций  ${}^{56}$  Fe(p, xp) и  ${}^{56}$  Fe(n, xp).

Необходимо подчеркнуть также, что бериллиевая вставка при меньшей плотности и Z, по сравнению с алюминиевой, дает на 6% больший выход нейтронов в бланкете, видимо, за счет реакций  ${}^{9}\text{Be}(n,2n)$ , более эффективной термализации вторичных нейтронов и, как следствие, более интенсивного деления ядер урана.

По сравнению с BeU-вставкой бланкет с UBe-вставкой показывает на 27-42% больший выход нейтронов и скорость нейтрон-ядерных взаимодействий, при этом неупругих рассеяний протонов на 17% меньше.

#### ЗАКЛЮЧЕНИЕ

Детализирована и оптимизирована упрощенная модель большой урановой мишени с различными вставками для дальнейших исследований ее нейтронно-физических характеристик.

Получены и проанализированы интегральный выход нейтронов, энергетические спектры вторичных частиц и данные об энерговыделении в мишенях расщепления, выполненных из различных материалов, гомогенных и композитных.

Достигнута хорошая сходимость результатов моделирования с соответствующими экспериментальными данными.

Рассчитаны нейтронно-физические характеристики подкритической системы с различными вставками с использованием стандартных физических моделей BIC и INCL/ABLA.

Результаты будут использованы при планировании экспериментальных исследований на большой урановой мишени ОИЯИ (Дубна), направленных на решение проблем трансмутации долгоживущих продуктов деления и минор-актинидов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Дубровский А.И., Киевицкая А.И. Моделирование нейтронно-физических характеристик подкритической системы, управляемой ускорителем заряженных частиц высоких энергий // Письма в ЭЧАЯ. 2020. Т. 17, № 1(226). С. 7–17.
- Geant4 Collaboration Physics Reference Manual. Release 10.6. https://geant4.web.cern.ch/ support/user\_documentation. Date of access: 01.02.2020.
- Zucker M. S. et al. Spallation Neutron Production Measurements // Proc. of the 2nd Intern. Conf. on Accelerator Driven Transmutation Technologies & Applications (ADTTA), Kalmar, Sweden, June 1996. V. 1. P. 527–533.
- Kievitskaia A. I. et al. Accelerator Molten Salt Breeder as Fissible Producing Component of THORIUM-NES Concept for Energy Production and Transmutation of Plutonium // Proc. of the 8th Intern. Conf. on Emerging Nuclear Energy Systems (ICENES'96), Obninsk, Russia, June 24–28, 1996. P. 564–571.
- 5. Goorley T. et al. MCNP Monte Carlo Team, X-5, Release of MCNP5\_RSICC\_1.30-LANL.
- 6. *Huges H. et al.* MCNPX The LAHET/MCNP Code Merger. Report Los Alamos National Laboratory LA-UR-97-1638. Los Alamos, USA, 1997. P. 26.
- 7. Балдин А. А., Берлеев А. И., Кудашкин И. В., Могилдеа Г., Могилдеа М., Параипан М., Тютюнников С. И. Моделирование генерации нейтронов в мишенях из тяжелых металлов при помощи программного пакета Geant4 // Письма в ЭЧАЯ. 2016. Т. 13, № 2(200). С. 391– 402.
- 8. *Malyshkin Y. et al.* Modeling Spallation Reactions in Tungsten and Uranium Targets with the Geant4 Toolkit // Eur. Phys. J. Web Conf. 2012. V. 21. P. 10006.
- 9. Киевицкая А. И. Мезокаталитический гибридный реактор. Нейтронно-физические характеристики и энергетический баланс. Дис. ... канд. техн. наук. Защищена 05.12.1991. Минск, 1991. 125 с.

- Chigrinov S., Rakhno I., Kiyavitskaya H. The Code SONET to Calculate Accelerator Driven System Performance // Proc. of the 3rd Intern. Conf. on Accelerator Driven Transmutation Technologies and Application (99'ADTTA), Praha (Pruhonice), June 7–11, 1999. P.1–8. MO-O-C12 (CD ROM Edition).
- Chigrinov S., Rakhno I., Kievitskaia A. Monte Carlo Calculation of Relativistic Protons Interaction with Extended Targets and Transmutation of Iodine-129 and Neptunium-237 // Proc. of the Intern. Conf. on the Physics of Nuclear Science and Technology, New York, USA, Oct. 5–8, 1998. P. 1455–1461.

Получено 19 марта 2020 г.