ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

ИССЛЕДОВАНИЕ ЗАСЕЛЕНИЯ 178m,177 Та В (γ, xn) -РЕАКЦИЯХ

В. А. Желтоножский^{*a*}, М. В. Желтоножская^{*a*, 1}, А. В. Саврасов^{*b*}, А. П. Черняев^{*a*}, С. В. Варзарь^{*a*}, В. В. Кобец^{*b*}

^{*a*} Московский государственный университет им. М.В. Ломоносова, Москва ^{*б*} Институт ядерных исследований НАН Украины, Киев ^{*в*} Объединенный институт ядерных исследований, Дубна

В (γ , xn)-реакциях впервые измерены средневзвешенные выходы для ^{178m,177} Та при граничных значениях энергии тормозных γ -квантов 20, 40 и 55 МэВ. Результаты моделирования с использованием программного кода TALYS-1.9 демонстрируют доминирование статистических процессов.

The weighted average yields for 178m,177 Ta in (γ, xn) reactions were measured for the first time at the 20, 40, and 55 MeV boundary energies of bremsstrahlung γ -quanta. The simulation results using the TALYS-1.9 program code demonstrate the dominance of statistical processes.

PACS: 23.35.+g; 29.30.Kv; 27.50.+e; 24.10.Lx

введение

Исследование взаимодействия фотонов с атомными ядрами продолжается уже несколько десятков лет, и, несмотря на это, пока наиболее изучены сечения (γ, n) -и (γ, γ') -реакций [1,2]. Реакции $(\gamma, 2n)$, $(\gamma, 3n)$ и $(\gamma, 4n)$, особенно с возбуждением высокоспиновых изомеров, исследованы значительно хуже. В то же время они позволяют пролить свет как на механизмы протекания этих реакций, так и на структуру возбужденных уровней остаточного ядра в области непрерывного и дискретного спектров. Поэтому получение новых экспериментальных данных о фотоядерных реакциях на различных мишенях с Z = 73 (тантал) в широком диапазоне энергий тормозных γ -квантов имеет важное фундаментальное значение. Реакции 181 Ta $(\gamma, 4n)^{177}$ Ta на сегодняшний день не изучались, а реакция 181 Ta $(\gamma, 3n)^{178}$ Ta исследовалась в работе [3] для монохроматических γ -квантов до энергии 36 МэВ.

Исходя из вышеизложенного целью нашей работы является исследование (γ, xn) реакций на естественном тантале при граничной энергии тормозных γ -квантов 20, 40 и 55 МэВ.

¹E-mail: zhelton@yandex.ru

МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

Эксперименты осуществлялись с использованием гамма-активационных методов. Была проведена серия облучений мишеней металлического тантала естественного изотопного состава на линейных ускорителях электронов. Облучение мишеней проводилось на тормозных γ -пучках для электронов с энергией $E^{\max} = 20, 40$ и 55 МэВ. Продолжительность облучения образцов в разных экспериментах составляла от 20 до 80 мин.

При $E^{\max} = 20$ МэВ облучаемая мишень тантала представляла собой пластинку размером $1 \times 1 \times 0,043$ см, весом около 0,7 г. При $E^{\max} = 40$ МэВ мишень тантала была в виде пластинки $0,6 \times 2 \times 0,011$ см и весом около 0,22 г. При $E^{\max} = 55$ МэВ образец тантала был размером $2,0 \times 2,0 \times 0,02$ см, весом около 1,3 г. Для расчета потока тормозных γ -квантов для всех граничных энергий использовалась хорошо изученная ядерная реакция 181 Та $(\gamma, n)^{180}$ Та [4] на этих же мишенях.

Спектры γ -лучей облученных мишеней измерялись на гамма-спектрометрах, собранных на базе сверхчистых полупроводниковых GEM-детекторов объемом 100–200 см³ фирм Canberra и Ortec с эффективностью регистрации 15–40 % по сравнению с NaI(Tl)-детектором размерами 3' × 3". Энергетическое разрешение спектрометров составило 1,2 кэВ на γ -линии 343 кэВ ¹⁷⁵Нf и 1,8–2,0 кэВ на γ -линиях 1173,1332 кэВ ⁶⁰Со.

Регистрация активности ^{178m} Та проводилась по γ-линии 426,4 кэВ (рис. 1). Фрагменты измеренных γ-спектров приведены на рис. 2. Обработка γ-спектров проводилась с помощью программы Winspectrum [5]. Эффективность регистрации γ-квантов распада была определена с помощью стандартных калибровочных источников ^{152,154} Еи и ¹³³ Ва.

Для определения средневзвешенных выходов ($\langle Y \rangle$) реакций необходимо знать потоки тормозных γ -квантов на мишенях. Для их получения определялись интенсивности γ -линий 93,3 и 103,6 кэВ, сопровождающие распад ¹⁸⁰Та, и средневзвешенный выход реакции ¹⁸¹Та $(\gamma, n)^{180}$ Та. Этот выход определялся в результате свертки табличных значений сечения этой реакции для монохроматических γ -квантов с шагом

Рис. 1. Фрагмент схемы распада ^{178*m*,*g*}Та

Рис. 2. Фрагменты γ -спектра мишени естественного Та, облученной тормозными γ -квантами с $E^{\max} = 20$ МэВ (a), $E^{\max} = 40$ МэВ (b) и $E^{\max} = 55$ МэВ (a)

1 МэВ с относительными величинами смоделированного в Geant4 [6] спектра тормозных γ -квантов (рис. 3) по формуле:

$$Y_{\text{MOH}}^{\text{cp}}[\mathbf{\delta}] = \frac{\sum_{i=1}^{N} \sigma_i \varphi_i}{\sum_{i=1}^{N} \varphi_i},$$
(1)

где σ_i — табличные значения сечений реакции ¹⁸¹ Ta $(\gamma, n)^{180}$ Ta для монохроматических γ -квантов [3]; φ_i — относительные величины потока смоделированного в Geant4 спектра тормозных γ -квантов, приведенные к пороговой величине ¹⁸¹ Ta $(\gamma, n)^{180}$ Ta реакции. При облучении геометрия мишеней учитывается в самом программном коде Geant4, т. е. учитывается ослабление потока для низкоэнергетических тормозных γ -квантов. В нашем случае этими поправками можно пренебречь вследствие высоких пороговых энергий тормозных γ -квантов для исследуемых реакций.

После этого рассчитывались потоки тормозных γ -квантов по формуле

$$F = \frac{S\lambda A}{(1 - e^{-\lambda t_{obn}}) e^{-\lambda t_{oxn}} (1 - e^{-\lambda t_{H3M}}) \xi k \eta Y_{MOH}^{cp} N_A mp},$$
(2)

где S — площади фотопиков, соответствующих распаду ¹⁸⁰Та; η — квантовые выходы γ -квантов при распаде ¹⁸⁰Та; ξ — эффективности регистрации γ -квантов, со-

Рис. 3. Смоделированный спектр тормозных γ -квантов для величин энергии электронов 20, 40 и 55 МэВ

провождающих распад ядер ¹⁸⁰Та; $t_{обл}$, $t_{охл}$, $t_{изм}$ — времена облучения, охлаждения и измерения соответственно (с); k — коэффициенты самопоглощения γ -квантов распада. Они рассчитываются после моделирования реальных облучаемых мишеней в программном коде MCNP [7]. Рассчитывается эффективность регистрации нужных γ -линий для точечной (ε_{τ}) и реальной (ε_{p}) мишеней и вводится поправка на самопоглощение $k = \varepsilon_{p}/\varepsilon_{\tau}$. При этом эффективность регистрации для точечной мишени совпадает с экспериментальной, полученной с помощью калибровочных точечных источников; p — абсолютное содержание ¹⁸¹Та в естественной смеси; $N_A = 6.02 \cdot 10^{23}$ — число Авогадро; $Y_{\rm мон}^{\rm cp}$ — средневзвешенный выход реакции ¹⁸¹Та(γ , n)¹⁸⁰Та, рассчитанный согласно (1) (б); m — массы мишеней тантала на единицу площади ($\Gamma/{\rm cm}^2$);

Tаблица 1. Экспериментальные и теоретические средневзвешенные выходы $(\langle Y\rangle)$ получения $^{177,178m}{\rm Ta}$

Реакция	Энергия $E^{\max},$ МэВ	$\langle Y angle$, мб						
		Эксперимент	TALYS-1.9, модели плотностей уровней*					
			ld 1	ld2	ld3	ld4	1d5	1d6
$^{180}\mathrm{Ta}(\gamma,2n)^{178m}\mathrm{Ta}$	20	$48,5{\pm}5,0$	61	56	61	25	73	56
$^{181}\mathrm{Ta}(\gamma,3n)^{178m}\mathrm{Ta}$	40	$1,50{\pm}0,15$	6,7		7	3	7	5,4
	55	$1,3\pm 0,1$	4,5	4,6		2,5	5	3,8
$^{181}\mathrm{Ta}(\gamma,4n)^{177}\mathrm{Ta}$	40	$9,3{\pm}0,9$	3,8	3,3	3,7	2,5	2,2	2,7
	55	$6,1{\pm}0,9$	5,8	5,6	5,2	4,1	4,6	5,3

^{*} ld1 — постоянная температуры и ферми-газа [9], используется по умолчанию; постоянные: ld2 — обратно смещенная ферми-газа [10]; ld3 — обобщенная сверхтекучая [11]; ld4 — микроскопическая из таблиц Goriely (силы Скирма) [12]; ld5 — микроскопическая из комбинаторных таблиц Hilaire (силы Скирма) [13]; ld6 — микроскопическая из комбинаторных таблиц Hilaire (силы Когни) [14].

A = 181, 180 — массовые числа атомов изотопов тантала; λ — постоянная распада ¹⁸⁰Та (с⁻¹). Величины λ , α , A, p берутся из [8]; S — из экспериментальных γ -спектров, а ξ — из калибровочных кривых, дополнительно проверенных с помощью моделирования с использованием программного b кода Geant4.

Далее по формуле (2) с использованием этих данных и поправок на разницу энергетических порогов исследуемых реакций и реакций на мониторах рассчитывались $\langle Y \rangle$ реакций ¹⁸¹Ta $(\gamma, 3n)^{178m}$ Ta, ¹⁸¹Ta $(\gamma, 4n)^{177}$ Ta при $E^{\max} = 40$ и 55 МэВ и ¹⁸⁰Ta $(\gamma, 2n)^{178m}$ Ta при $E^{\max} = 20$ МэВ. Результаты приведены в таблице. Следует отметить, что содержание ¹⁸⁰Ta в естественной смеси 0,012%, а порог реакции ¹⁸¹Ta $(\gamma, 3n)$ составляет 22,2 МэВ. Поэтому при облучении естественного тантала тормозными γ -квантами с $E^{\max} = 20$ МэВ она запрещена согласно закону сохранения энергии, а при $E^{\max} = 40$ и 55 МэВ полностью доминирует.

Статистическая погрешность в наших измерениях составила менее 5 %. В то же время моделирование спектра тормозных γ -квантов достаточно сложная задача, так как при облучении использовались разные по размерам и массам сборки. Наша оценка погрешности за счет формы тормозного γ -спектра составила около 10 %. Для оценки систематической погрешности измерения проводились на разных спектрометрах, в таблице указана общая погрешность.

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Для оценки механизмов протекания исследуемых ядерных реакций нами проведено моделирование этих процессов с использованием программного кода TALYS-1.9. Более детально моделирование с помощью этого кода изложено в [15], в нем учитываются доминирующие статистические и предравновесные процессы.

При теоретических расчетах определяются сечения для каждого изотопа отдельно с шагом 1 МэВ для монохроматических γ -квантов и далее по (1) рассчитываются средневзвешенные выходы исследуемых реакций.

Результаты наших расчетов приведены в таблице. Как видно, при граничной энергии 20 МэВ для (γ , 2n)-реакции достигается неплохое согласие теоретических и экспериментальных данных. Отметим, что в данной реакции процессы происходят между высокоспиновыми состояниями с J^{π} 9⁻ \rightarrow 7⁻ и мы наблюдаем хорошее согласие практически для всех моделей плотности уровней. Эти данные резко контрастируют с исследованиями с заселением высокоспиновых состояний с K = 8. Средневзвешенные выходы для (γ , n)-реакции в этом случае даже качественно не описываются в коде TALYS-1.9 [16]. Это указывает на то, что статистические переходы слабо заселяют состояния, в которых происходит значительная перестройка их структуры.

Средневзвешенные выходы $(\gamma, 3n)$ - и $(\gamma, 4n)$ -реакций, на наш взгляд, успешно описываются в программном коде TALYS-1.9, что указывает на доминирование статистических процессов в этих реакциях. Некоторая аномалия для $(\gamma, 4n)$ -реакции в соотношении выходов при 40 и 55 МэВ может быть обусловлена тем, что максимум функции возбуждения этой реакции находится в области 40–45 МэВ и смещение его на 5 МэВ изменяет выход $(\gamma, 4n)$ -реакции при $E^{\max} = 40$ МэВ в разы. В то же время для 55 МэВ такое смещение не играет столь кардинальной роли.

выводы

Впервые измерены средневзвешенные выходы ядерных реакций ¹⁸⁰ Ta(γ , 2n)^{178m} Ta при $E^{\max} = 20$ M₉B, ¹⁸¹ Ta(γ , 3n)^{178m} Ta и ¹⁸¹ Ta(γ , 4n)¹⁷⁷ Ta при $E^{\max} = 40$ и 55 M₉B. Результаты моделирования в рамках программного кода TALYS-1.9 демонстрируют доминирование статистических процессов. В целом, можно сделать вывод о том, что модель ферми-газа лучше описывает экспериментальные данные, чем микроскопические расчеты в области граничных энергий больше 30 МэВ.

Работа выполнена при финансовой поддержке РФФИ и БРФФИ в рамках научного проекта № 20-51-00009. Выражаем благодарность сотруднику НИИЯФ МГУ С.С.Белышеву за помощь в облучении образцов на разрезном микротроне.

СПИСОК ЛИТЕРАТУРЫ

- Гангрский Ю. П., Мазур В. М. Рассеяние у-квантов ядрами и возбуждение изомерных состояний // ЭЧАЯ. 2002. Т. 33, вып. 1. С. 158–200.
- 2. Ditrich S.S., Berman B.L. Atlas of Photoneutron Cross Sections Obtained with Monoenergetic Photons // Atom. Data Nucl. Data Tables. 1988. V. 38, No. 2. P. 199-338.
- Bergère R., Beil H., Veyssère A. Photoneutron Cross Sections of La, Tb, Ho and Ta // Nucl. Phys. A. 1968. V. 121, No. 2. P. 463–480.
- Varlamov V. V., Ishkhanov B. S., Orlin V. N., Peskov N. N., Stepanov M. E. // Phys. Atom. Nucl. 2013. V. 76. P. 1403.
- 5. Strilchuk N. V. The WinSpectrum Manual. 2000.
- Agostinelli S. et al. (Geant4 Collab.). Geant4 A Simulation Toolkit // Nucl. Instr. Meth. A. 2003. V. 506. P. 250.
- Briesmeister J. F. MCNP A General Monte Carlo N-Particle Transport Code. Los Alamos National Lab. Report LA-12625-M. 1997. 989 p.
- 8. Firestone R. B. Table of Isotopes. 8th ed. New York: Wiley Intersci., 1996.
- 9. Gilbert A., Cameron A.G.W. A Composite Nuclear-Level Density Formula with Shell Corrections // Can. J. Phys. 1965. V.43. P. 1446.
- Dilg W., Schantl W., Vonach H., Uhl M. Level Density Parameters for the Back-Shifted Fermi Gas Model in the Mass Range 40 < A < 250 // Nucl. Phys. A. 1973. V.217, No.2. P.269-298.
- Ignatyuk A. V., Weil J. L., Raman S., Kahane S. Density of Discrete Levels in ¹¹⁶Sn // Phys. Rev. C. 1993. V.47. P. 1504.
- Goriely S., Tondeur F., Pearson J.M. A Hartree-Fock Nuclear Mass Table // Atom. Data Nucl. Data Tables. 2001. V. 77, No. 2. P. 311–381.
- Goriely S., Hilaire S., Koning A. J. Improved Microscopic Nuclear Level Densities within the Hartree–Fock–Bogoliubov plus Combinatorial Method // Phys. Rev. C. 2008. V. 78. P. 064307.
- Hilaire S., Girod M., Goriely S., Koning A.J. Temperature-Dependent Combinatorial Level Densities with the D1M Gogny Force // Phys. Rev. C. 2012. V. 86. P. 064317.
- Koning A. J., Hilaire S., Duijvestijn M. C. TALYS: Comprehensive Nuclear Reaction Modeling // AIP Conf. Proc. 2005. V. 769, No. 1. P. 1154–1159.
- 16. Zheltonozhsky V. A., Savrasov A. M. Excitation of 179 Hf^{m2} with (γ, n) -Reaction // Nucl. Instr. Meth. B. 2019. V. 456. P. 116–119.

Получено 11 ноября 2020 г.