ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

ИССЛЕДОВАНИЕ ВОЗБУЖДЕНИЯ K-ИЗОМЕРОВ $^{180, 182}$ Нf и 177 Lu В (γ, α)-РЕАКЦИЯХ

В. А. Желтоножский^а, М. В. Желтоножская^{а, 1}, А. В. Саврасов⁶, А. П. Черняев^а, В. Н. Яценко^в

^а Московский государственный университет им. М. В. Ломоносова, Москва

⁶ Институт ядерных исследований НАН Украины, Киев

^в Государственный научный центр Российской Федерации Федеральный медицинский биофизический центр им. А. И. Бурназяна, Москва

Впервые измерены средневзвешенные выходы заселения 180m Hf, 182m Hf и 177 Lu в (γ, α)реакциях при граничных значениях энергии тормозных γ -квантов 40 и 55 МэВ. Проведено моделирование в рамках программного кода TALYS-1.9.

The weighted average population yields of 180m Hf, 182m Hf, and 177 Lu were measured for the first time in (γ, α) -reactions at the 40 and 55 MeV boundary energies of bremsstrahlung γ -quanta. The simulation was carried out within the framework of the TALYS-1.9 program code.

PACS: 23.35.+g; 23.20.Nx; 82.80.Jp; 07.05.Tp; 24.10.Lx

введение

Исследование сечений возбуждения высокоспиновых изомеров является одним из актуальных направлений для понимания механизмов ядерных реакций. При возбуждении таких изомерных состояний в разных реакциях могут проявляться различные вклады статистических и нестатистических каналов реакций. Изомеры ^{180,182} Нf в этом ряду — интересные объекты исследования, так как эти *K*-запрещенные изомеры ($\Delta K = 8$) похожи и имеют одинаковые $I^{\pi} = 8^{-}$ и близкие величины энергии возбуждения, 1141 и 1173 кэВ соответственно.

Особый интерес вызывает исследование (γ, α) -реакций с заселением этих ядер. Данных о (γ, α) -реакциях мало. Основной причиной этого является то, что их сечения значительно ниже по сравнению с (γ, n) -каналом вследствие кулоновского барьера. В то же время в (γ, α) -реакциях могут возбуждаться состояния, часто недоступные для (γ, n) -канала. Также для фотоядерных реакций с вылетом α -частиц ожидается значительный вклад прямых и полупрямых процессов, особенно при заселении высокоспиновых *K*-изомеров. На сегодняшний день реакции ¹⁸⁴ W $(\gamma, \alpha)^{180m}$ Hf и

¹E-mail: zhelton@yandex.ru

 186 W(γ, α) 182m Hf не изучались, а реакция 181 Ta(γ, α) 177 Lu исследовалась в работах [1, 2] для тормозных фотонов с граничной величиной энергии 23 и 37 МэВ соответственно. Но в работе [1] для $E_{\rm rp} = 23$ МэВ был получен лишь выход 177 Lu по отношению к выходу реакции 181 Ta(γ, n) 180 Ta.

Исходя из вышесказанного целью нашей работы является исследование возбуждения ядер $^{180m}{\rm Hf},~^{182m}{\rm Hf}$ и $^{177}{\rm Lu}$ в (γ,α)-реакциях для граничных энергий тормозных γ -квантов 40 и 55 МэВ.

ЭКСПЕРИМЕНТ И РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

Исследование сечений проводилось методом наведенной активности на тормозных γ -пучках для электронов с величиной энергии 40 и 55 МэВ. Было проведено несколько серий облучений и измерений. Продолжительность облучения образцов составляла 60–80 мин.

Мишени изготавливали из металлических вольфрама и тантала естественного изотопного состава. При $E_{\rm rp} = 40$ МэВ мишень состояла из прямоугольной полосы тантала и квадратной полосы вольфрама размерами $0.6 \times 2 \times 0.011$ см и весом около 220 мг и $2 \times 2 \times 0.0057$ см и весом около 441 мг соответственно. При $E_{\rm rp} = 55$ МэВ образец представлял собой квадратную полоску тантала и прямоугольную полоску вольфрама размерами $2 \times 2 \times 0.02$ см и весом около 1,3 г и размерами $1.3 \times 1.5 \times 0.005$ см и весом около 186 мг соответственно. Для расчета потока тормозных γ -квантов в обоих случаях использовалась хорошо изученная ядерная реакция 181 Ta $(\gamma, n)^{180}$ Ta [3].

Наведенную активность измеряли γ -спектрометрами на базе HPGe-детекторов с эффективностью регистрации 15–40% по сравнению с NaI(Tl)-детектором размерами 3' \times 3" и энергетическим разрешением 1,8–2 кэВ на γ -линиях ⁶⁰Со. Обработка γ -спектров проводилась с помощью программы Winspectrum [4]. Эффективность регистрации γ -квантов распада была определена с помощью стандартных калибровочных источников ^{152,154}Еu и ¹³³Ва.

Для определения средневзвешенных выходов ($\langle Y \rangle$) реакций нужно знать потоки тормозных γ -квантов на мишенях. Для их получения определялись интенсивности γ -линий 93,3 и 103,6 кэВ, сопровождающие распад ¹⁸⁰Та (рис. 1 и 2) и средневзвешенный выход реакции ¹⁸¹Та(γ , n)¹⁸⁰Та.

Средневзвешенный выход вышеуказанной реакции определялся в результате свертки табличных значений сечений этой реакции для монохроматических γ -квантов

Рис. 1. Фрагмент схемы распада ¹⁸⁰Та

Рис. 2. Фрагмент γ -спектра тантала, облученного тормозными γ -квантами с $E_{\rm rp} = 55~{\rm M}$ эВ

Рис. 3. Спектр тормозных ү-квантов для разных величин энергии электронов

с шагом 1 МэВ с относительными величинами моделированного в Geant4 [5] спектра тормозных γ -квантов (рис. 3) по формуле

$$Y_{\text{MOH}}^{\text{cp}}[\mathbf{6}] = \frac{\sum_{i=1}^{N} \sigma_i \varphi_i}{\sum_{i=1}^{N} \varphi_i},$$
(1)

где σ_i — табличные значения сечений реакции ¹⁸¹ Ta $(\gamma, n)^{180}$ Ta для монохроматических γ -квантов [3]; φ_i — относительные величины потока, моделированного в Geant4 спектра тормозных γ -квантов, приведенные к пороговым величинам реакции на мониторе.

После этого рассчитывались потоки тормозных γ -квантов по формуле

$$F = \frac{S\lambda A}{(1 - e^{-\lambda t_{\text{ofd}}}) e^{-\lambda t_{\text{oxa}}} (1 - e^{-\lambda t_{\text{HM}}}) \xi k \alpha Y_{\text{MOH}}^{\text{cp}} N_A m p},$$
(2)

где S — площади фотопиков, которые сопровождают распад ¹⁸⁰Та; α — квантовые выходы γ -квантов при распаде ¹⁸⁰Та; ξ — эффективность регистрации γ -квантов, сопровождающих распад ядер продуктов реакций на мониторной мишени; $t_{oбn}$, t_{oxn} , $t_{изм}$ — времена облучения, охлаждения и измерения соответственно (с); k — коэффициенты самопоглощения γ -квантов распада; p — абсолютное содержание ¹⁸¹Та в естественной смеси; $N_A = 6,02 \cdot 10^{23}$ — число Авогадро (б); $Y_{\rm MoH}^{\rm cp}$ — средневзвешенный выход реакции ¹⁸¹Та(γ , n)¹⁸⁰Та, рассчитанный согласно (1); m — массы мишеней тантала, отнормированные на площадь мишени (г/см²); A = 181 — массовое число атомов тантала (а. о. м); λ — постоянная распада ¹⁸⁰Та (с⁻¹). Величины λ , k, α , A, p взяты из [6], S — из экспериментальных γ -спектров, а ξ — из калибровочных кривых, дополнительно проверенных с помощью моделирования в Geant4.

Далее по формуле (2) с использованием этих потоков и поправок на разницу энергетических порогов рассчитывались $\langle Y \rangle$ реакций (γ, α) на естественных вольфраме и тантале, приводящих к активации *K*-изомеров в ^{180,182}Нf и основного состояния ¹⁷⁷Lu. Фрагменты схем распада ^{180m}Hf, ^{182m}Hf и ¹⁷⁷Lu приведены на рис. 4. Для получения средневзвешенных выходов заселения ¹⁷⁷Lu и изомерных состояний ^{180m}Hf,

Рис. 4. Фрагменты схем распада: ^{180m} Hf, ^{182m} Hf, ¹⁷⁷ Lu

Рис. 5. Фрагмент γ -спектра облученной при $E_{\rm rp} = 55~{\rm M}$ эВ мишени Та

Рис. 6. Фрагмент γ -спектра облученной при $E_{\rm rp} = 55$ МэВ мишени ^{nat}W (реакция ¹⁸⁴W(γ, α)^{180m}Hf)

Рис. 7. Фрагмент γ -спектра облученной при $E_{\rm rp} = 55 \, \text{МэВ}$ мишени ^{nat}W (реакция ¹⁸⁶W $(\gamma, \alpha)^{182m}$ Hf)

Экспериментальные средневзвешенные $\langle Y \rangle$ выходы наработки 180m Hf, 182m Hf и 177 Lu

Реакция	$E_{\rm rp}$, МэВ	$\langle Y angle$, эксп., мкб	$\langle Y \rangle$, TALYS-1.9, мкб
184 W $(\gamma, \alpha)^{180m}$ Hf	40	1,0(2)	0,004
$^{184}\mathrm{W}(\gamma,\alpha)^{180m}\mathrm{Hf}$	55	2,5(3)	0,005
186 W $(\gamma, \alpha)^{182m}$ Hf	40	5,7(17)	0,001
$^{186}\mathrm{W}(\gamma,\alpha)^{182m}\mathrm{Hf}$	55	2,8(9)	0,003
$^{181} ext{Ta}(\gamma,lpha)^{177} ext{Lu}$	40	33(8)	0,160

^{182m}Ні определяли площади фотопиков γ-линий 208,4 кэВ, 443,2 кэВ и 224,4 кэВ соответственно (рис. 5–7). Результаты расчетов приведены в таблице.

обсуждение

Для оценки механизмов протекания исследуемых ядерных реакций нами проведено моделирование этих процессов с использованием программного кода TALYS-1.9. Более детально о моделировании с помощью этого кода изложено в [7], в нем учитываются доминирующие статистические и предравновесные процессы.

При теоретических расчетах определяются сечения с шагом 1 МэВ для монохроматических γ -квантов и далее по (1) рассчитываются средневзвешенные выходы исследуемых реакций.

Результаты наших расчетов приведены в таблице. Как видно, для обеих граничных величин энергии не достигается согласия теоретических и экспериментальных данных как для параметров по умолчанию, так и для их вариации в разумных пределах. Теоретические выходы остаются ниже экспериментальных величин приблизительно на три порядка.

Поэтому нами рассмотрен механизм полупрямых реакций [8]. При таком подходе α -частица вылетает из ядра за время $t\sim 10^{-21}$ с, а время формирования кулоновского барьера $10^{-18}-10^{-19}$ с [9, 10]. После вылета α -частицы ядро распадается через обычные статистические переходы. В нашем случае распадаются остаточные ядра $^{180,182}{\rm Hf}$

и ¹⁷⁷Lu аналогично, как и при (γ, γ')-реакциях [11]. Рассчитанные средневзвешенные выходы в коде TALYS-1.9 для модели плотности уровней постоянной температуры и ферми-газа [12], которая используется по умолчанию, дают для ^{180,182}Hf величины $\langle Y \rangle \approx 2-3$ мкб, а для ¹⁷⁷Lu на порядок больше, т.е. находятся в хорошем согласии с экспериментом.

выводы

Впервые измерены средневзвешенные выходы ядерных реакций ¹⁸¹Та(γ, α)¹⁷⁷Lu, ¹⁸⁴W(γ, α)^{180m}Hf и ¹⁸⁶W(γ, α)^{182m}Hf при $E^{\max} = 40$ и 55 МэВ. Результаты моделирования в рамках программного кода TALYS-1.9 демонстрируют доминирование нестатистических полупрямых процессов.

Работа выполнена при финансовой поддержке РФФИ и БРФФИ в рамках научного проекта № 20-51-00009.

СПИСОК ЛИТЕРАТУРЫ

- 1. Karamian S.A. Z Dependence of the (γ, α) Reaction Yield // Phys. Atom. Nucl. 2014. V. 77. P. 1429.
- Zheltonozhsky V. A., Savrasov A. M., Zheltonozhskaya M. V., Chernyaev A. P. Excitation of ^{177,178}Lu in Reactions with Bremsstrahlung with Escaping of Charged Particles // Nucl. Instr. Meth. B. 2020. V. 476. P. 68–72.
- Varlamov V. V., Ishkhanov B. S., Orlin V. N., Peskov N. N., Stepanov M. E. // Phys. Atom. Nucl. 2013. V. 76. P. 1403.
- 4. Strilchuk N. V. The WinSpectrum Manual. 2000.
- Agostinelli S. et al. (Geant4 Collab.). Geant4 A Simulation Toolkit // Nucl. Instr. Meth. A. 2003. V. 506. P. 250.
- 6. Firestone R. B. Table of Isotopes. 8th ed. New York: Wiley Intersci., 1996.
- Koning A.J., Hilaire S., Duijvestijn M.C. TALYS: Comprehensive Nuclear Reaction Modeling // AIP Conf. Proc. 2005. V. 769, No. 1. P. 1154–1159.
- 8. *Ishkhanov B. S., Kapitonov I. M.* Giant Dipole Resonance of Atomic Nuclei. M.: Moscow State Univ., 2008. 148 p. (in Russian).
- Morinaga H. Effects of Isotopic Spin Selection Rules on Photonuclear Yields // Phys. Rev. 1955. V. 97. P. 444.
- Akyüz R. Ö., Fallieros S. Energy Displacement of Dipole Isodoublets // Phys. Rev. Lett. 1971. V. 27. P. 1016.
- Zheltonozhsky V. A., Zheltonozhskaya M. V., Savrasov A. N., Chernyaev A. P., Yatsenko V. N. Investigation of Excitation of K-Isomers ^{179m2}Hf and ^{180m}Hf in (γ, γ') Reactions // Phys. Atom. Nucl. 2020. V. 83. P. 539–544.
- 12. Gilbert A., Cameron A. G. W. A Composite Nuclear-Level Density Formula with Shell Corrections // Can. J. Phys. 1965. V. 43. P. 1446.

Получено 11 ноября 2020 г.