ДИНАМИКА ПУЧКА ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ ЛИУ-2

Д. Старостенко^{а, 1}, А. Акимов^а, П. Бак^а, Д. Болховитянов^а, Я. Куленко^а, П. Логачев^а, Д. Никифоров^а, А. Петренко^а, О. Павлов^а, А. Павленко^а, А. Пачков^а, А. Ахметов⁶, А. Черница⁶, О. Никитин⁶, А. Каргин⁶, П. Колесников⁶, С. Хренков⁶, Д. Петров⁶

> ^а Институт ядерной физики им. Г. И. Будкера Сибирского отделения Российской академии наук, Новосибирск, Россия

⁶ Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт технической физики им. Е. И. Забабахина, Снежинск, Россия

Рентгенографические комплексы на базе линейного индукционного ускорителя предназначены для изучения быстропротекающих гидродинамических процессов и используют сильноточный электронный пучок для получения точечного источника гамма-излучения при помощи конверсионной мишени. Источником электронов в таких установках служат инжекторы, способные генерировать импульсы длительностью от десятков наносекунд до нескольких микросекунд и током в несколько килоампер. Задача транспортировки и фокусировки такого пучка в диаметр порядка 1 мм является сложной из-за большого влияния эффекта пространственного заряда.

Применение термоэмиссионного катода, в отличие от автоэмиссионного катода, обеспечивает стабильную генерацию нескольких последовательных импульсов с временным интервалом в несколько микросекунд, и из-за этого предъявляются высокие требования к вакуумной системе инжектора: не хуже 10⁻⁷ Торр [1].

X-ray facilities based on a linear induction accelerator are designed to study high density objects. It requires the high-current electron beam to obtain a small spot and bright X-ray source using a conversion target. The electrons source in such facilities is injectors capable of generating pulses with a duration from tens of nanoseconds to several microseconds and a current of several kA. The transportation and focusing of high-current beams into diameter about 1 mm is difficult due to the space charge phenomena. The use of a thermionic cathode, as compared to auto-emission cathode, provides stable generation of several pulses with a time interval of several microseconds, but makes high requirements on the injector vacuum system: not less than 10^{-7} Torr [1].

PACS: 41.50.+h; 29.20.Ej

¹E-mail: d.a.starostenko@inp.nsk.su

ДИСПЕНСЕРНЫЙ КАТОД

Катодный узел является неотъемлемой частью любой системы формирования пучка. Для изучения однородности эмиссии с поверхности катода были произведены тепловые расчеты системы нагрева катода с целью оптимизации катодного узла. В частности, изучалась однородность распределения температуры вдоль поверхности керна катода. Это принципиально важно с точки зрения формирования пучка.

Рис. 1. Внешний вид катодного узла

Численное 3D-моделирование выполнено с помощью программной платформы COMSOL Multiphysics. При расчетах применялся модуль Surface-to-surface radiation, который позволяет учитывать теплообмен излучением между твердыми телами в прозрачной среде. В качестве исходной геометрии использовалась 3D-модель катодного узла. Все расчеты произведены для стационарного теплового режима. Внешний вид модифицированного катодного узла в сборе представлен на рис. 1.

Рис. 2. Модель катода для тепловых расчетов в COMSOL для получения распределения температуры на поверхности катода

Рис. 3. Распределение температуры вдоль горизонтального сечения поверхности катода

При мощности 2500 Вт температура косвенного подогревателя достигает 1500 °С, температура поверхности катода около 1000 °С. Несимметричная форма подогревателя (рис. 2) приводит к увеличению на 4 градуса температуры в локальной зоне, что является допустимой величиной (рис. 3).

РАСЧЕТЫ ДИНАМИКИ ПУЧКА

В настоящее время разработано несколько различных кодов для моделирования сильноточных электронных пучков в ускорителях. Для корректного учета пространственного заряда необходимо проводить моделирование с участием большого числа макрочастиц, при этом время счета может занимать часы и даже дни, в зависимости от решаемой задачи и размеров системы даже с привлечением высокопроизводительной вычислительной техники. Простой и удобной альтернативой для моделирующих программ с макрочастицами может быть код на основе уравнения огибающей для аксиально-симметричного пучка с равномерным распределением. Один из таких кодов был разработан в ИЯФ СО РАН.

Для расчетов динамики пучка в ЛИУ-2 использовались коды K–V envelope code и REDPIC [2], разработанные в ИЯФ СО РАН. Уравнение огибающей для аксиальносимметричного пучка имеет вид

$$r'' + k_s r - \frac{P}{r} - \frac{\epsilon^2}{r^3} = 0.$$

Здесь рассматривается круглый пучок с радиусом r и равномерным распределением плотности объемного заряда, причем $P = (2I)/(I_a\beta^3\gamma^3)$ — обобщенный первеанс пучка, $I_a = 17$ кА; ϵ — эмиттанс пучка; $k_s = (eB_z/2mc\beta\gamma)^2$ — жесткость соленоидальных линз; β — безразмерная скорость; γ — лоренц-фактор.

На рис. 4 представлено сравнение моделирований с помощью кодов K–V envelope code (черная штриховая линия) и REDPIC (голубое заполнение). Моделирование в программе REDPIC осуществлялось с равномерным поперечным распределением частиц в пучке и длительностью импульса ~ 200 нс. Время счета такой задачи занимает около ~ 4 ч. При моделировании с помощью кода K–V envelope code (штриховая линия) интегрирование уравнения огибающей с шагом в ~ 1 мм по z занимает несколько секунд. Результаты моделирования с помощью вышеуказанных кодов показывают хорошее соответствие между собой.

Магнитная система ЛИУ-2 состоит из трех импульсных бронированных соленоидов длиной 217 мм с максимальным полем до 2 кГс и короткого бронированного соленоида — линзы финального фокуса длиной 60 мм с максимальным полем 4,5 кГс. Основная задача магнитной системы заключается в обеспечении транспортировки пучка от катода до мишенного узла без токовых потерь и качественной фокусировки.

Сферическая аберрация финальной фокусной линзы приводит к тому, что периферийные частицы преломляются сильнее, и это не позволяет сфокусировать пучок большого диаметра в требуемый размер 1 мм (рис. 5).

Оценим размер пучка на входе в линзу финального фокуса, при котором размер аберрационного пятна будет равен менее 1 мм. Рассмотрим линзу финального фокуса со следующими параметрами, которые представлены в табл. 1.

Параметр	Значение
Длина, мм	60
Радиус апертуры, мм	60
Магнитное поле, кГс	До 4

Таблица 1. Параметры линзы финального фокуса

Рис. 4 (цветной в электронной версии). *a*) Сравнение расчетов динамики пучка при помощи K–V envelope code (черная штриховая линия) и REDPIC (голубое заполнение). *б*) Продольное распределение магнитного поля вдоль транспортного канала

Рис. 5. Схематическое изображение траекторий частиц при прохождении тонкой линзы со сферической аберрацией

Расчет без учета пространственного заряда в UltraSAM траекторий для параллельного округлого пучка после прохождения линзы выполнен для разных радиусов пучка. Из рис. 6 видно, как за счет сферической аберрации ведут себя перефокусиро-

Рис. 6. Результат моделирования траекторий пучка после прохождения линзы финального фокуса

ванные траектории. В табл. 2 представлены значения Δr_{\min} в зависимости от размера пучка r_i на входе в линзу, полученные аналитическим методом и при помощи программы UltraSAM.

r_i , MM	UltraSAM	Аналитическая оценка
	Δr_{\min} , мм	$\Delta r_{ m min}$, мм
25	0,88	0,71
20	0,41	0,35
15	0,19	0,16
10	0,05	0,04

Таблица 2. Сравнительные результаты

Расхождение между результатами моделирования и аналитической оценкой находится в пределах 20%, что может быть обусловлено ошибками численных расчетов, связанными с малыми размерами пучка в кроссовере. Тем не менее можно сделать вывод о том, что на входе в линзу финального фокуса величина радиуса пучка r_i не должна превышать 20 мм.

ОПТИМИЗАЦИЯ МАГНИТНОЙ СИСТЕМЫ

Для снижения влияния сферической аберрации линзы финального фокуса на размер фокусного пятна размер пучка на входе в финальную линзу должен быть оптимизирован.

Расчеты при помощи K-V envelope code показывают, что установка дополнительной линзы перед финальной линзой позволяет изменить радиус пучка на входе перед финальной линзой в широком диапазоне, а значит, удовлетворить требованиям для размера фокусного пятна, описанным выше (рис. 7).

Рис. 7. а) Огибающая пучка; б) продольное распределение магнитного поля

ТРАНСПОРТНЫЙ КАНАЛ

Разработана новая версия транспортного канала пучка, включающая новый трансформатор тока, датчик переходного излучения для измерения поперечного профиля пучка, дополнительную линзу между третьей и финальной линзами (рис. 8).

Это позволит визуально наблюдать поперечный профиль и размер пучка, измерить основные параметры пучка, снизить влияние сферической аберрации, упростить настройку магнитной системы для качественной фокусировки пучка на конверсионную мишень.

Рис. 8. Новая версия транспортного канала пучка

ЗАКЛЮЧЕНИЕ

Новая версия катодного узла произведена и успешно установлена на ЛИУ-2.

Разработанный в ИЯФ СО РАН К–V envelope code позволяет за несколько секунд выполнить расчеты огибающей пучка с учетом пространственного заряда и учесть влияние сферической аберрации линзы финального фокуса.

Предложена новая конфигурация транспортного канала с новыми элементами диагностики с апертурой 152 мм для измерения поперечного профиля, расчета коррекции орбиты и других параметров пучка.

Благодарности. Данная работа была выполнена при поддержке Государственной корпорации по атомной энергии «Росатом».

СПИСОК ЛИТЕРАТУРЫ

1. Takayama K., Briggs R.J. Induction Accelerators. 2010. P. 119-120.

 Novokhatski A. V. REDPIC. Computer Simulation of Radiation Field Dynamics in Accelerating Structures. Preprint INP 82-157. 1982.

Получено 26 января 2022 г.