ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ТЕОРИЯ

ИССЛЕДОВАНИЕ ЯДЕРНОГО ВКЛАДА В СЕЧЕНИЕ РАЗВАЛА ГАЛО-ЯДРА ¹¹Ве В НЕСТАЦИОНАРНОМ ПОДХОДЕ

Д. С. Валиолда^{а, б, в, 1}, Д. М. Джансейтов^{а, б, в}, В. С. Мележик^{в, г}

^а Институт ядерной физики, Алма-Ата, Казахстан

⁶ Казахский национальный университет им. аль-Фараби, Алма-Ата, Казахстан

^в Объединенный институт ядерных исследований, Дубна

^г Государственный университет «Дубна», Дубна, Россия

В данной работе изучается влияние ядерного взаимодействия на кулоновский развал однонейтронного гало-ядра на тяжелой мишени при низких энергиях пучка (5–30 МэВ/нуклон) в непертурбативном нестационарном подходе, включающем низколежащие резонансы в различных парциальных и спиновых состояниях ¹¹Ве. Данный подход позволяет просто и с высокой точностью моделировать ядерное взаимодействие между снарядом и мишенью в широком диапазоне энергий столкновений. Наши расчеты потенциально могут быть полезны для исследования структуры различных гало-ядер в реакциях развала с низкоэнергетическими пучками.

In this work, the influence of nuclear interaction to the Coulomb breakup of one-neutron halo nuclei on a heavy target has been studied within the non-perturbative time-dependent approach for low beam energies (5–30 MeV/nucleon) including the low-lying resonances in different partial and spin states of ¹¹Be. Overall, this numerical technique allows an accurate and straightforward modeling of the nuclear interaction between the projectile and the target on a widely range of the beam energies. Our calculations can be potentially useful for exploring the halo structure in breakup reactions with low beam energies.

PACS: 44.25.+f; 44.90.+c

введение

Гало-ядра — один из интенсивно исследуемых объектов в современной ядерной физике. Кулоновский развал является важным инструментом для изучения слабосвязанной гало-структуры. В частности, полезная информация о структуре гало содержится в сечениях развала.

¹E-mail: valiolda.dinara@gmail.com

Гало-ядра обычно описываются малочастичной моделью: кор, который содержит большую часть нуклонов, плюс один или два валентных нуклона. В данной работе нестационарное уравнение Шредингера (УШ), описывающее динамику нуклона относительно кора, интегрируется с помощью численного алгоритма на трехмерной пространственной сетке, где предполагается, что «снаряд» движется по классической траектории, и его взаимодействие с мишенью описывается зависящим от времени кулоновским и ядерным потенциалами с мишенью [1].

Для промежуточных энергий пучка (около 70 МэВ/нуклон) в реакции развала ¹¹Ве на тяжелой мишени имеются достаточно точные экспериментальные данные [2,3] и теоретический анализ, выполненный в рамках различных подходов [1,4,5]. Однако для более низких энергий пока имеется лишь несколько теоретических работ [4,6], а применимость использованных здесь подходов требует обоснования и проверки [7].

В данной работе мы восполняем этот пробел, обобщая с учетом области низких энергий теоретическую модель, разработанную в [1, 8, 9] и успешно примененную к распаду гало-ядер ¹¹Ве [1,8], ¹⁵С [8] и ¹⁷F [9] при более высоких энергиях пучка.

краткое теоретическое описание модели

Для данной реакции развала решается временное УШ, которое описывает динамику движения нейтрона относительно кора (¹⁰Be) в реакции развала ¹¹Be + ²⁰⁸Pb \rightarrow ¹⁰Be + n + ²⁰⁸Pb:

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = H(\mathbf{r},t)\Psi(\mathbf{r},t) = [H_0(r) + V_C(\mathbf{r},t)]\Psi(\mathbf{r},t).$$
(1)

В этом выражении гамильтониан $H_0(r) = (-\hbar^2/2\mu)\Delta_r + V(r)$ описывает относительное движение нуклон-кор с приведенной массой $\mu = m_n m_c/M$, где m_n, m_c , $M = m_n + m_c$ массы нейтрона, ¹⁰Ве-кора и ядра ¹¹Ве соответственно. Потенциал V(r) состоит из зависящего от l (орбитального момента) центрального потенциала $V_l(r)$ и спин-орбитальной части $V_l^s(r)(ls)$ взаимодействия. Взаимодействие между ядром ¹¹Ве с тяжелой мишенью описывается зависящим от времени кулоновским потенциалом

$$V_C(\mathbf{r}, t) = \frac{Z_c Z_t e^2}{|m_n \mathbf{r}/M + \mathbf{R}(t)|} - \frac{Z_c Z_t e^2}{R(t)},$$
(2)

где Z_c и Z_t — зарядовые числа кора-ядра и мишени и $\mathbf{R}(t)$ — относительная координата между «снарядом» и мишенью, которая представляет линейную функцию $\mathbf{R}(t) = \mathbf{b} + \mathbf{v}_0 t$, где \mathbf{b} — прицельный параметр, а \mathbf{v}_0 — начальная скорость «снаряда» [1,10]. Для решения четырехмерного временного УШ (1) мы используем непертурбативный подход, который был предложен и успешно применен в работах [1,8,9]. Все детали численного решения УШ подробно описаны в предыдущих работах [1,9].

Взаимодействие нейтрона с кором ¹⁰Ве представляет стандартную сумму сферического потенциала Вудса–Саксона $V_l(r) = V_l f(r)$, где $f(r) = 1/(1 + \exp((r - R_0)/a))$ с радиусом $R_0 = 2,585$ фм и диффузностью a = 0,6 фм, и спин-орбитального взаимодействия $V_l^s(r) = V_{ls}(1/r)(d/dr)f(r)(ls)$ и основано на параметризации, в которой используется стандартное значение $V_{ls} = 21$ МэВ · фм² [10]. Потенциал Вудса–Саксона

с глубиной $V_l = 62,52$ МэВ (l = 0) и $V_l = 39,74$ МэВ (l = 1) воспроизводит основное $1/2^+$ -состояние ¹¹Ве при энергии -0,503 МэВ, первое возбужденное $1/2^-$ -состояние при -0,183 МэВ и два резонансных состояния $5/2^+$ и $3/2^+$ с положениями резонансных пиков при $E_{5/2^+} = 1,230$ МэВ и $E_{3/2^+} = 3,367$ МэВ [11]. Для фиксации положения резонанса $3/2^-$ к значению $E_{3/2^-} = 2,789$ МэВ [11] параметры Вудса-Саксона были подобраны нами в виде $V_l = 6,80$ МэВ (l = 1), a = 3,5 фм, $R_0 = 2,5$ фм.

ВКЛАД ЯДЕРНОГО ВЗАИМОДЕЙСТВИЯ В СЕЧЕНИЕ РАЗВАЛА

В предыдущих работах [1] по изучению кулоновского развала ¹¹Ве на тяжелой ²⁰⁸Рb-мишени в рамках временного непертурбативного подхода взаимодействие мишени со «снарядом» (2) предполагалось чисто кулоновским. В работе [8] было показано, что вклад от ядерной части взаимодействия между «снарядом» и мишенью в сечение развала незначителен при средних энергиях порядка 70 МэВ/нуклон. Здесь мы исследуем этот эффект при более низких энергиях пучка, используя оптический потенциал для описания ядерной части $\Delta V_N(r) = V_{cT}(r_{cT}) + V_{nT}(r_{nT})$ взаимодействия между «снарядом» и мишенью:

$$V(\mathbf{r},t) = V_C(\mathbf{r},t) + \Delta V_N(r).$$
(3)

Здесь r_{cT} и r_{nT} — относительные координаты кор-мишень ($\mathbf{r}_{cT}(t) = \mathbf{R}(t) + m_n \mathbf{r}/M$) и нейтрон-мишень ($\mathbf{r}_{nT}(t) = \mathbf{R}(t) - m_c \mathbf{r}/M$), а оптические потенциалы V_{cT} и V_{nT} имеют вид

$$V_{xT}(r_{xT}) = -V_x f(r_{xT}, R_R, a_R) - iW_x f(r_{xT}, R_I, a_I)$$
(4)

с формфактором Вудса–Саксона $f(r_{xT}, R_R, a_R) = 1/(1 + \exp(r_{xT} - R)/a)$, где x обозначает кор или нейтрон. Параметры оптических потенциалов (4) взяты из работы [8].

В расчетах сечения развала с учетом чисто кулоновского взаимодействия между «снарядом» и мишенью влияние ядерного эффекта устраняется выбором минимального прицельного параметра $b_{\min} = 12$ фм в формуле

$$\frac{d\sigma_{bu}(E)}{dE} = \frac{4\mu k}{\hbar^2} \int_{b_{\min}}^{b_{\max}} \sum_{lm} \left| \int \phi_{ljm}(k,r) Y_{lm}(\hat{r}) \Psi(\mathbf{r}, T_{out}) \, d\mathbf{r} \right|^2 b \, db.$$
(5)

Здесь учитывается взаимодействие нейтрона с кором в непрерывном спектре и $\phi_{ljm}(k,r)$ является радиальной частью собственных функций гамильтониана $H_0(r)$: $H_0\phi_{ljm}(E,\mathbf{r}) = E\phi_{ljm}(E,\mathbf{r})$, если $E = k^2\hbar^2/(2\mu) > 0$. Включение ядерного взаимодействия между «снарядом» и мишенью позволяет выполнить расчеты при меньших значениях прицельного параметра b ($b_{\min} = 5$ фм). На рис. 1 сравниваются сечения развала без учета и с учетом ядерного взаимодействия между ¹¹Ве и мишенью при низких энергиях пучка: 5 и 30 МэВ/нуклон. Чисто кулоновское приближение (2) дает завышенные значения для сечения развала по сравнению с расчетом, учитывающим ядерное взаимодействие (3) между «снарядом» и мишенью. При расчете сечения учитывались два связанных состояния (основное $1/2^+$ и первое возбужденное $1/2^-$) и три резонансных состояния ($5/2^+$, $3/2^-$ и $3/2^+$) ядра ¹¹Ве.

Рис. 1. Сечение развала, вычисленное для чисто кулоновского взаимодействия (2) «снаряда» с мишенью (штриховые линии) и с учетом ядерного эффекта (сплошные линии) для энергии пучка 5 и 30 МэВ/нуклон

Мы также рассчитали вероятность перехода $P_{lj}(b)$ [8] в возбужденное состояние $1/2^-$ с энергией $E_{l=1,j=1/2} = -0.183$ МэВ при столкновении ядра ¹¹Ве с мишенью ²⁰⁸Рb при низких энергиях:

$$P_{lj}(b) = \frac{1}{2} \sum_{m} |\langle \phi_{ljm}(E_{lj}, r) | \Psi(\mathbf{r}, T_{\text{out}}) |^2.$$
(6)

Как показано на рис. 2, вероятности возбуждения $P_{lj}(b)$ (умноженные на $2\pi b$), рассчитанные с включением оптического потенциала, меньше вероятности для чисто кулоновского взаимодействия мишень-снаряд. Проведенное исследование показывает усиление влияния ядерных эффектов с уменьшением энергий столкновения.

Проведенное исследование показывает, что с уменьшением энергии пучка влияние ядерных эффектов во взаимодействии «снаряда» с мишенью становится значимым для сечения развала. При этом вклад от резонансных состояний остается заметным. В частности, резонансный пик 5/2⁺ остается четко видимым при низких энергиях пучка.

Рис. 2. Вероятности перехода $P_{lj}(b)$ (умноженные на $2\pi b$) в состояние $1/2^-$, рассчитанные с включением оптического потенциала (сплошная линия) и для чисто кулоновского возбуждения (штриховые линии) при энергиях пучка 5 и 30 МэВ/нуклон

ЗАКЛЮЧЕНИЕ

Мы расширили теоретическую модель, разработанную в [1,8,9], в область низких энергий. В рамках данной модели рассчитаны сечения развала ¹¹Ве на тяжелой ²⁰⁸Рb мишени при энергиях 5–30 МэВ/нуклон с учетом кулоновского и ядерного взаимодействия между «снарядом» и мишенью. Исследовано влияние резонансных состояний 5/2⁺, 3/2⁻ и 3/2⁺ [11] на сечение развала. Разработанная вычислительная схема открывает новые возможности в исследовании кулоновского, а также ядерного развала других гало ядер как на тяжелых, так и на легких мишенях.

СПИСОК ЛИТЕРАТУРЫ

- Melezhik V. S., Baye D. Nonperturbative Time-Dependent Approach to Breakup of Halo Nuclei // Phys. Rev. C. 1999. V. 59. P. 3232; http://doi.org/10.1103/PhysRevC.59.3232.
- 2. *Nakamura T. et al.* Coulomb Excitation of ¹¹Be // Phys. Lett. B. 1994. V. 331. P. 296; https://doi.org/10.1016/S0370-2693(96)01690-5.
- Fukuda N. et al. Coulomb and Nuclear Breakup of a Halo Nucleus ¹¹Be // Phys. Rev. C. 2004. V.70. P. 054606; https://doi.org/10.1103/PhysRevC.70.054606.
- Baye D., Capel P., Goldstein G. Collisions of Halo Nuclei within a Dynamical Eikonal Approximation // Phys. Rev. Lett. 2005. V. 95. P. 082502; https://doi.org/10.1103/PhysRevLett.95.082502.
- Mukeru B., Lekala M.L., Rampho G.J. Coulomb Barrier Penetrability in the ¹¹Be+²⁰⁸Pb Breakup Reaction // J. Phys. G: Nucl. Part. Phys.. 2015. V.42, No. 8. P. 085110; https://doi.org/10.1088/0954-3899/42/8/085110.
- Banerjee P. et al. Postacceleration Effects in the Coulomb Dissociation of Neutron Halo Nuclei // Phys. Rev. C. 2002. V. 65. P. 064602; https://doi.org/10.1103/PhysRevC.65.064602.
- Hebborn C., Capel P. Low-Energy Corrections to the Eikonal Description of Elastic Scattering and Breakup of One-Neutron Halo Nuclei in Nuclear-Dominated Reactions // Phys. Rev. C. 2018. V. 98. P. 044610; https://doi.org/10.1103/PhysRevC.98.044610.
- 8. *Capel P., Baye D., Melezhik V.S.* Time-Dependent Analysis of the Breakup of Halo Nuclei // Phys. Rev. C. 2003. V.68. P.014612; https://doi.org/10.1103/PhysRevC.68.014612.
- Melezhik V. S., Baye D. Time-Dependent Analysis of the Coulomb Breakup Method for Determining the Astrophysical S Factor // Phys. Rev. C. 2001. V. 64. P. 054612; https://doi.org/110.1103/PhysRevC.64.054612.
- Kido T., Yabana K., Suzuki Y. Coulomb Breakup Mechanism of Neutron Drip-Line Nuclei // Phys. Rev. C. 1994. V. 50. P. R1276; https://doi.org/10.1103/PhysRevC.50.R1276.
- Ershov S. N., Vaagen J. S., Zhukov M. V. Cluster Model with Core Excitations. The ¹¹Be Example // Phys. At. Nucl. 2014. V. 77, No. 8. P. 989; https://doi.org/10.1134/S1063778814070072.

Получено 26 января 2022 г.