ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

СВОЙСТВА РАДИОАКТИВНОГО РАСПАДА НОВОГО ЯДРА ²²⁷Ри

А. А. Кузнецова^{a, 1}, А. И. Свирихин^{a, 6}, А. В. Исаев^{a, 6}, М. А. Бычков^a, В. Д. Данилкин^{a, в}, Х. М. Деваража^a, Н. И. Замятин^a,

И. Н. Изосимов^а, Чж. Лю^{г,д}, О. Н. Малышев^{а,б}, Р. С. Мухин^а,

А. Г. Попеко^{а, б}, Ю. А. Попов^{а, б}, В. А. Рачков^{а, б}, Б. Сайлацбеков^{а, е, ж}.

Е.А. Сокол^а, М.С. Тезекбаева^{а, е}, И.И. Уланова^{а, б}, Ф.Ш. Чжан^{з, и, к}.

В. И. Чепигин^а, М. Л. Челноков^а, А. В. Еремин^{а, б}

^{*a*} Объединенный институт ядерных исследований, Дубна ⁶ Государственный университет «Дубна», Дубна, Россия ^{*e*} Национальный исследовательский ядерный университет «МИФИ», Москва

²Институт современной физики Китайской академии наук, Ланьчжоу, Китай

^{*о*}Университет Китайской академии наук. Пекин

^е Институт ядерной физики, Алма-Ата, Казахстан

^ж Евразийский национальный университет им. Л. Н. Гумилева, Астана

³ Колледж ядерных наук и технологий, Пекинский педагогический университет, Пекин

 $^{\it u}$ Институт радиационных технологий, Пекинская академия науки и технологий, Пекин

^к Центр теоретической ядерной физики, Национальная лаборатория ускорителей тяжелых ионов в Ланьчжоу, Ланьчжоу, Китай

В цепочках радиоактивных распадов ядер, полученных в реакциях полного слияния с тяжелыми ионами 26 Mg + 204 Pb и 26 Mg + 206 Pb на сепараторе GRAND (фабрика СТЭ, ЛЯР ОИЯИ), были зарегистрированы события, относящиеся к распаду неизвестного ранее изотопа 227 Pu. Для ядра 227 Pu измерены энергия α -частиц ($E_{\alpha} = (8156 \pm 26)$ кэВ) и период полураспада ($T_{1/2} = 2, 2^{+0,5}_{-0,3}$ с). Единственное событие с $E_{\alpha} = (8754 \pm 24)$ кэВ и оценкой периода полураспада для нижней границы 1 мс, которое, вероятно, можно отнести к распаду 226 Pu, было идентифицировано в цепочке распада, приводящей к известному изотопу 222 U.

A new isotope ²²⁷Pu was discovered by complete fusion reactions ²⁶Mg + ²⁰⁴Pb and ²⁶Mg + ²⁰⁶Pb. The experiment was carried out at the GRAND separator of the SHE Factory at FLNR, JINR. For the nucleus ²²⁷Pu, an α -particle energy of $E_{\alpha} = (8156 \pm 26)$ keV and a half-life of $T_{1/2} = 2.2^{+0.5}_{-0.3}$ s were measured. A single event with $E_{\alpha} = (8754 \pm 24)$ keV and an estimated lower limit half-life of 1 ms from the measured lifetime, which is probably attributed to the new isotope ²²⁶Pu, was identified by chains with ²²²U.

PACS: 23.60.+e; 25.70.-z; 25.60.Pj; 27.90.+b; 29.40.Gx

¹E-mail: aakuznetsova@jinr.ru

Эту работу мы посвящаем своему коллеге и наставнику — Александру Владимировичу ЕРЕМИНУ, который скоропостижно скончался до выхода данной работы. Его уход огромная потеря для науки и для людей, которых он объединял вокруг себя. Многие годы он руководил сектором, в котором проводились исследования на сепараторах ВАСИЛИСА и GRAND. В последние годы А.В. Еремин занимал должность заместителя директора ЛЯР, в этом качестве он был незаменимым участником многих новых проектов лаборатории. Выражаем нашу глубочайшую скорбь и горечь утраты.

введение

Изучение свойств ядер, расположенных вдали от линии β -стабильности, позволяет определить влияние избытка нейтронов или протонов в ядре на свойства радиоактивного распада. В текущей работе, в реакциях полного слияния ионов ²⁶ Mg с ядрами мишеней из ^{204,206} Pb, в каналах с испарением нескольких нейтронов изучались свойства радиоактивного распада самых легких изотопов плутония, вплоть до N = 132. Полученные данные сравнивались с теоретическими оценками (Q_{α}) [1] и систематикой периодов полураспада, представленной на рис. 1.

Рис. 1 (цветной в электронной версии). Систематика периодов полураспада четных актиноидов в зависимости от числа нейтронов N [1]. Периоды полураспада изотопов плутония, полученные в данной работе, находятся в области N = 132 - 133 (красные точки)

ЭКСПЕРИМЕНТ

Исследования проводились в ЛЯР ОИЯИ в 2023 г. на пучках тяжелых ионов с использованием сепаратора продуктов реакций полного слияния GRAND [2, 3]. Газонаполненный сепаратор GRAND установлен в экспериментальном зале нового ускорителя ДЦ-280 [4], который является базовой установкой комплекса фабрики сверхтяжелых элементов ЛЯР ОИЯИ и позволяет получать пучки многозарядных ионов ⁴⁸Са с рекордной интенсивностью, достигающей 10 мкА частиц.

Для регистрации ядер отдачи (evaporation residue — ER) и продуктов их распада использовалась детектирующая система GABRIELA [5], разработанная для прецизионной α -, β -, γ -корреляционной спектроскопии короткоживущих ядер, получаемых в реакциях с тяжелыми ионами. В этой комбинированной детектирующей системе ядра отдачи и продукты их распада регистрируются в фокальном кремниевом детекторе с двухсторонним расположением стрипов (DSSD) размером 100×100 мм $(128 \times 128 \text{ стрипов})$ и боковыми детекторами DSSD (8 детекторов размером $50 \times 60 \text{ мм}$, 16 × 16 стрипов каждый), образующими вместе с фокальным позиционно-чувствительным DSSD сборку в форме «колодца». Эти детекторы позволяют регистрировать α -, β -частицы и осколки спонтанного деления. Для регистрации γ -квантов вокруг «колодца» кремниевых детекторов размещается сборка из пяти HPGe-детекторов «клеверного» типа. Спектрометрические данные о у-переходах, полученные с использованием HPGe-детекторов «клеверного» типа в этом эксперименте, будут опубликованы отдельно. В данной работе не использовалась времяпролетная система (ToF), которая служит «отметчиком» ядер отдачи. Это создало определенные трудности при анализе данных. Кинетическая энергия ER, принимающая значения в диапазоне от 3 до 10 МэВ, пересекается с областью энергий α -частиц исследуемых ядер. Поэтому мы проводили анализ данных по длинным цепочкам распадов.

Для калибровки кремниевых детекторов и проверки работы спектрометрической электроники использовался радиоактивный распад короткоживущих ядер 201,202m1 At, получаемых в реакции слияния 26 Mg + 181 Ta. В данной работе энергетическое разрешение фокального детектора, измеренное по α -линии 202m1 At (6132 кэВ), составило 24 кэВ.

В экспериментах применялись мишени из сульфида свинца ²⁰⁴PbS толщиной 807 мкг · см⁻² и ²⁰⁶PbS — 555 мкг · см⁻². Изотопный состав мишени для ²⁰⁴Pb: ²⁰⁴Pb (99,940%), ²⁰⁶Pb (0,040%), ²⁰⁷Pb (0,010%), ²⁰⁸Pb (0,010%); для ²⁰⁶Pb: ²⁰⁶Pb (99,979%), ²⁰⁴Pb (0,006%), ²⁰⁷Pb (0,010%), ²⁰⁸Pb (0,005%).

Интенсивность пучка ионов на мишени не превышала 2 мкА частиц. В ходе эксперимента энергия пучка ионов варьировалась от 132 до 150 МэВ для перехода по испарительным каналам реакций полного слияния.

Эффективность транспорта (трансмиссия) ядер отдачи установки GRAND для реакций ²⁶Mg + ^{204,206}Pb составила 6 %. Расчеты трансмиссии проводились с использованием методики, описанной в работах [6,7].

ИЗОТОП ²²⁷Ри

Для четно-нечетного ядра ²²⁷Pu (N = 133) теоретическая оценка энергии α -распада составляет $Q_{\alpha} = 8300$ кэВ [1], что соответствует энергии α -частицы $E_{\alpha} = 8153$ кэВ. Из систематики, представленной на рис. 1, можно ожидать, что период

полураспада ядра ²²⁷Pu находится в секундной области. На основе этих оценок и информации о распаде известных ядер ²²³U и ²¹⁹Th [8] выбирались следующие условия поиска коррелированных событий, относящихся к распаду ²²⁷Pu и его дочерних продуктов: 8,1 < α_1 < 8,3 MэB, 8,7 < α_2 < 9,1 MэB, 10 < pile-up ($\alpha_2 + \alpha_3$) < 19 MэB, 8,6 < α_4 < 8,8 МэB с окнами по времени $\Delta T(\text{ER-}\alpha_1)$ < 20 с, $\Delta T(\alpha_1 - \alpha_2/(\alpha_2 + \alpha_3))$ < 600 мкс, $\Delta T(\alpha_3 - \alpha_4)$ < 10 мс. Поиск генетически связанных цепочек распадов осуществлялся с учетом координат ядра отдачи, вбитого в фокальный позиционно-чувствительный детектор DSSD.

В ходе анализа продуктов распада, полученных в реакции 26 Mg + 206 Pb (рис. 2), протекающей с испарением пяти нейтронов, были зарегистрированы 60 α -распадов, которые можно отнести к распаду ранее неизвестного ядра плутония с массовым номером 227. Статистика событий, идентифицированных в различных корреляционных цепочках, представлена в таблице.

Спектр α -частиц на рис. 3, *а* демонстрирует хорошо выделенную линию α -распада ядра ²²⁷ Ри с энергией $E_{\alpha} = (8156\pm26)$ кэВ (оценка $Q_{\alpha} = 8302$ кэВ). Период полураспада ²²⁷ Ри составил $T_{1/2} = 3,5^{+0,5}_{-0,4}$ с, что находится в хорошем соответствии с систематикой, представленной на рис. 1. Распределения по временам жизни для искомых ядер ²²⁷ Ри и коррелированных дочерних продуктов показаны на рис. 3, *г*-*е*. Для изотопа ²²³ U зафиксированы две выраженные α -линии $E_{\alpha} = (8790\pm27)$, (8952 ± 38) кэВ и определен период полураспада $T_{1/2} = 26,6^{+4,0}_{-3,0}$ мкс. Измеренный период полураспада ²²³ U хорошо соответствует значению, полученному ранее $(18^{+10,0}_{-5,0})$ мкс) [9]. За-

Рис. 2 (цветной в электронной версии). Двумерный энергетический спектр α_1 -частиц первого поколения, коррелирующих с α_2 -частицами второго поколения, которые были получены в реакции 26 Mg + 206 Pb при $\Delta \tau (\alpha_1 \cdot \alpha_2) < 10$ мс, в цепочках распада ER- $\alpha_1 \cdot \alpha_2$. Корреляции 227 Pu $\rightarrow {}^{223}$ U и 227 Pu $\rightarrow {}^{215}$ Ra выделены розовой рамкой, 225 U $\rightarrow {}^{221}$ Th — оранжевой, 221 Th $\rightarrow {}^{217}$ Ra и 221 Th $\rightarrow {}^{213}$ Rn — синей, 222 Th \rightarrow pile-up — красной, 223 Th $\rightarrow {}^{219}$ Ra и 223 Th $\rightarrow {}^{215}$ Rn — зеленой, 219 Ra $\rightarrow {}^{215}$ Rn — фиолетовой и 218 Rn $\rightarrow {}^{214}$ Po — желтой

Цепочка распада		$^{26}\mathrm{Mg} + ^{206}\mathrm{Pb} \rightarrow$	$^{26}\mathrm{Mg} + {}^{204}\mathrm{Pb} \rightarrow$
		$^{227}\mathrm{Pu} + 5n$	$^{227}\mathrm{Pu}+3n$
(I)	$\mathrm{ER} \to {}^{227}\mathrm{Pu}(\alpha_1) \to {}^{223}\mathrm{U}(\alpha_2) \to {}^{215}\mathrm{Ra}(\alpha_4)$	7	_
(II)	$ER \to {}^{227}Pu(\alpha_1) \to {}^{223}U(\alpha_2)$	18	8
(III)	$ER \to {}^{227}Pu(\alpha_1) \to ({}^{223}U(\alpha_2) + {}^{219}Th(\alpha_3))^*$	15	13
(IV)	$\operatorname{ER} \rightarrow {}^{227}\operatorname{Pu}\left(\alpha_{1} ight) \rightarrow {}^{215}\operatorname{Ra}\left(\alpha_{4} ight)$	10	8
(V)	$\mathrm{ER} ightarrow {}^{227}\mathrm{Pu}\left(lpha_{1} ight) ightarrow {}^{219}\mathrm{Th}\left(lpha_{3} ight)$	—	3
(VI)	$ \begin{array}{l} \operatorname{ER} \to {}^{227}\operatorname{Pu}\left(\alpha_{1}\right) \to \left({}^{223}\operatorname{U}\left(\alpha_{2}\right) {+}^{219}\operatorname{Th}\left(\alpha_{3}\right)\right)^{*} \\ \to {}^{215}\operatorname{Ra}\left(\alpha_{4}\right) \end{array} $	10	_
(VII)	$ER^{**} \to {}^{227}Np(\alpha_1) \to {}^{223}Pa(\alpha_2)$	8	4
	Всего	68 событий	36 событий
(VIII)	$^{229}\mathrm{Pu(ER)}\!\rightarrow^{221}\mathrm{Th}\left(\alpha_{3}\right)\rightarrow^{217}\mathrm{Ra}\left(\alpha_{4}\right)$	16 (8***)	—
* Фиксировались pile-up, т. е. результат сложения сигналов от α_2 и α_3 . $T_{1/2}$ ²²³ U (α_2) = 26.6 ^{+4,0} мкс и $T_{1/2}$ ²¹⁹ Th (α_2) = 1.05(3) мкс [8]			

Результаты поиска генетически связанных цепочек распада ядра ²²⁷Pu, синтезируемого в реакциях ${}^{26}Mg + {}^{206}Pb \rightarrow {}^{227}Pu + 5n$ и ${}^{26}Mg + {}^{204}Pb \rightarrow {}^{227}Pu + 3n$

 $^{+*}$ Цепочки, отнесенные к распаду 227 Ри через электронный захват.

*** Ожидаемое число цепочек, оцененное через сечение реакции 26 Mg + 206 Pb с испарением трех нейтронов, и вероятность зарегистрировать 229 Pu в окне по времени менее 20 с.

мечено, что распределение времени ²²³U имеет два пика (см. рис. 3, ∂). Второй пик $\tau = 182,5$ мкс свидетельствует о появлении случайных событий в корреляциях. На рис. 3, δ , где показан α -спектр ²²³U, красным цветом выделены события из реакции 26 Mg + 204 Pb, по которым становится ясно, что пик с энергией 8790 кэВ более интенсивный, чем 8952 кэВ, и это подтверждают данные, полученные в работе [8].

В реакции ²⁶Mg + ^{204,206}Pb был зафиксирован α -распад ядер ²²⁷Np ($E_{\alpha} = (7626 \pm 24)$ и (7687 \pm 21) кэВ), который можно объяснить либо распадом ²²⁷Pu по пути электронного захвата (EC), либо образованием ядер ²²⁷Np в *pxn*-каналах реакций. Полученные значения энергий α -частиц ²²⁷Np и ²²³Pa согласуются с опубликованными данными [10, 11]. На рис. 4 показано общее для двух описываемых реакций распределение времени жизни, построенное для корреляций типа ER $\rightarrow \alpha_1 \rightarrow \alpha_2$. Наиболее интенсивный пик $\tau = 3,6$ с, очевидно, относится к электронному захвату ²²⁷Pu (суммарно зарегистрированы 12 событий, см. таблицу, цепочка VII), а второй пик $\tau = 133$ мс (5 событий), по всей видимости, относится к распаду ядра ²²⁷Np, образованного в *p*4*n*-канале для реакции ²⁶Mg + ²⁰⁶Pb и в *p*2*n*-канале для реакции ²⁶Mg + ²⁰⁴Pb.

Полученный период полураспада для электронного захвата ²²⁷ Pu составил $T_{1/2} = 2.5^{+0.8}_{-0.5}$ с (см. рис. 4), что несколько меньше указанного ранее значения для α -распада ²²⁷ Pu ($T_{1/2} = 3.5^{+0.5}_{-0.4}$ с). Это наводит на мысль, что изотоп ²²⁷ Pu живет меньше, это подтверждается данными, полученными в реакции ²⁶ Mg + ²⁰⁴ Pb (см. ниже).

В реакции полного слияния ${}^{26}Mg + {}^{204}Pb \rightarrow {}^{230}Pu^*$ с испарением трех нейтронов были зарегистрированы 32 события, относящихся к распаду ${}^{227}Pu$. Измеренная

Рис. 3 (цветной в электронной версии). *a*) Альфа-спектр ²²⁷ Pu, полученный в реакциях 26 Mg + 204 Pb и 26 Mg + 206 Pb, красный — получен в корреляции ER- α_1 - α_4 ; *b*) α -спектр 223 U, красным отмечены события из реакции 26 Mg + 204 Pb; *b*) α -спектр 215 Ra; *c*) распределение времени жизни $\Delta \tau$ (ER- α_1); *d*) $\Delta \tau$ (α_1 - α_2); *e*) $\Delta \tau$ (α_2 - α_4)

Рис. 4. Распределение времени жизни $\Delta \tau \, (^{227} \rm Pu + ^{227} \rm Np)$ и $\Delta \tau \, (^{227} \rm Np)$, полученное в реакциях $^{26} \rm Mg + ^{204} \rm Pb$ и $^{26} \rm Mg + ^{206} \rm Pb$

энергия α -частиц ²²⁷Pu $E_{\alpha} = (8157 \pm 25)$ кэВ совпадает с той, что была получена в реакции ²⁶Mg + ²⁰⁶Pb. Период полураспада для ядра ²²⁷Pu, идентифицированного в этом облучении, составил величину $2,2^{+0,5}_{-0,3}$ с.

Чтобы прояснить разницу времен жизни ²²⁷Ри в обсуждаемых реакциях (3,5^{+0,5}_{-0,4} с и $2,2^{+0,5}_{-0,3}$ с), отметим, что в реакции ${}^{26}Mg + {}^{206}Pb$ с испарением трех нейтронов образуются ядра 229 Pu. Согласно опубликованным данным изотоп 229 Pu имеет E_{α} = (7457 ± 20) кэВ и $T_{1/2} = 67^{+41}_{-19}$ с [11–14]. Это ядро испускает α -частицу и превращается в 225 U ($E_{lpha} = (7846 \pm 24)$ кэВ и др., $64, 2^{+23,4}_{-13,5}$ мс), который распадается в ²²¹Th ($E_{\alpha} = (8140 \pm 59)$ кэВ и др., $1,8^{\pm 0,07}_{-0,07}$ мс), и т. д. Таким образом, цепоч-ка распада ²²⁹Pu (ER) $\stackrel{<20 \text{ c}}{\longrightarrow}$ ²²¹Th (α_3) $\stackrel{<600 \text{ мкс}}{\longrightarrow}$ ²¹⁷Ra (α_4)¹, в которой не фиксируется распад 225 U, может быть идентифицирована как цепочка 227 Pu (ER) $\xrightarrow{<20 \text{ c}}$ 227 Ри (α_1) $\xrightarrow{<600 \text{ мкс}}$ 223 U (α_2). Всего было зарегистрировано 16 цепочек, которые можно отнести к распадам ²²⁹Ри (см. таблицу). Принимая во внимание существенно большее время жизни ²²⁹Pu, нужно отметить, что такое «наложение» приводит к искажению измерения времени жизни ²²⁷Pu, регистрируемого в цепочках II и III. Если исключить такие «наложения» из рассмотрения, то период полураспада в реакции $^{26}{
m Mg} + ^{206}{
m Pb}$ станет $T_{1/2} = 2,4^{+1,3}_{-0.6}$ с. В реакции $^{26}{
m Mg} + ^{204}{
m Pb}$, где канал с испарением одного нейтрона сильно подавлен, не обнаружено образование изотопа ²²⁹Pu, поэтому время жизни 227 Pu определяется без искажений ($2,2^{+0.5}_{-0.3}$ с). На рис. 5, a представлены длинные корреляции, где хорошо различаются изотоп 227 Pu (α_1) и продукт его последующего α -распада ²¹⁵Ra (α_4).

В реакции ${}^{26}Mg + {}^{204}Pb$ также были найдены четыре цепочки распада $ER \rightarrow {}^{227}Np(\alpha_1) \rightarrow {}^{223}Pa(\alpha_2)$, относящиеся к распаду ${}^{227}Pu$ по пути электронного захвата (см. таблицу, цепочка VII).

На основе полученной статистики по корреляциям ER $\rightarrow {}^{227}$ Pu (α_1) $\rightarrow ({}^{223}$ U (α_2) + 219 Th (α_3))* $\rightarrow {}^{215}$ Ra (α_4) (10 событий) и ER $\rightarrow {}^{227}$ Np (α_1) $\rightarrow {}^{223}$ Pa (α_2) (12 событий) вероятность электронного захвата для 227 Pu составляет $b_{\rm EC} = 0.23 \pm 0.10$.

ИЗОТОП 226 Ри

При попытке получения нового ядра ²²⁶Pu использовалась реакция полного слияния ²⁶Mg + ²⁰⁴Pb \rightarrow ²²⁶Pu + 4n. Из теоретических оценок [15] энергия α -распада для этого ядра составляет $Q_{\alpha} = 8955$ кэВ, энергия α -частиц $E_{\alpha} = 8795$ кэВ соответственно. Систематика (см. рис. 1) указывает на то, что период полураспада искомого ядра располагается в миллисекундной области. С учетом этих приближений для изотопа ²²⁶Pu и табличных данных распада его дочерних продуктов [16] были подобраны следующие условия поиска корреляций: α_1 и $\alpha_2 < 10$ МэВ, $10 < \alpha_2 + \alpha_3 < 20$ МэВ, $\Delta T(\text{ER-}\alpha_1) < 50$ мс, $\Delta T(\alpha_1 - \alpha_2)$ и $\Delta T(\alpha_1 - (\alpha_2 + \alpha_3)) < 20$ мкс.

Было зарегистрировано одно коррелированное событие, которое можно отнести к цепочке α -распада вида ER $\rightarrow {}^{226}$ Pu (α_1) $\rightarrow ({}^{222}$ U (α_2) + 218 Th (α_3)). Энергия α_1 со-

¹Период полураспада ²¹⁷Ra составляет 1,6 мкс [14].

Рис. 5. *а*) Двумерный энергетический спектр α_1 -частиц первого поколения, коррелирующих с α_4 -частицами четвертого поколения, которые были получены в реакции ${}^{26}\text{Mg} + {}^{206}\text{Pb}$ при следующих условиях: 8,7 < α_2 < 19 МэВ, $\Delta \tau(\alpha_1 - \alpha_2)$ < 300 мкс, $\Delta \tau(\alpha_2 - \alpha_4 < 50$ мс; δ) аналогичное распределение для продуктов реакции ${}^{26}\text{Mg} + {}^{204}\text{Pb}$, наличие ${}^{221}\text{Th}$ объясняяется в тексте

ставила $E_{\alpha} = (8754 \pm 24)$ кэВ, а время корреляции 7,5 мс; оценивая ошибку периода полураспада изотопа ²²⁶ Ри методом максимального правдоподобия, получили нижний предел — 1 мс с вероятностью 95%. в этой же позиции DSSD через 5 мкс было зарегистрировано событие с аномально большой энергией — 15079 кэВ (см. рис. 5, *б*), что очень похоже на наложение амплитуды (partial pile-up) сигналов от распада короткоживущих ядер ²²² U (α_2) с $T_{1/2} = (4,7 \pm 7)$ мкс и ²¹⁸ Th (α_3) с $T_{1/2} = (117 \pm 9)$ нс [16].

Ядра ²²¹Th, представленные на рис. 3, б, вероятно, образуются в реакции многонуклонных передач или в канале $2\alpha xn$. Они хорошо различаются по короткому периоду полураспада $T_{1/2}(^{221}\text{Th}) = 1,8^{+0.08}_{-0.07}$ мс; наличие большого числа partial pile-up в цепочке $\text{ER} \rightarrow ^{221}\text{Th}(\alpha_1) \rightarrow ^{217}\text{Ra}(\alpha_2) \rightarrow ^{213}\text{Rn}(\alpha_3)$ связано с коротким временем жизни ²¹⁷Ra [14]. То же самое можно сказать о появлении изотопов ²¹⁸Rn в реакции ${}^{26}Mg + {}^{206}Pb$, показанных на рис.2 (в желтой рамке) или ${}^{222-223}Th$ (красная и зеленая рамки), ${}^{219}Ra$ (фиолетовая). Подробнее об этом и об измеренных сечениях для *xn*-, αxn -, $2\alpha xn$ - и *pxn*-каналов в реакциях ${}^{26}Mg + {}^{204,206}Pb$ будет сказано в отдельной статье.

ЗАКЛЮЧЕНИЕ

В представленной работе описаны данные радиоактивного распада ядра ²²⁷ Ри и его дочерних продуктов. Новый изотоп ²²⁷ Ри с $E_{\alpha} = (8156 \pm 26)$ кэВ имеет период полураспада $2,2^{+0,5}_{-0,3}$ с и вероятность электронного захвата $b_{\rm EC} = 0,23 \pm 0,1$. В реакции ²⁶ Mg + ²⁰⁴ Pb зафиксировано коррелированное событие, которое, вероятно, можно отнести к α -распаду нового изотопа ²²⁶ Ри ($E_{\alpha} = (8754 \pm 24)$ кэВ) с оценкой нижнего предела периода полураспада 1 мс. Впервые полученные в нашей работе значения периодов полураспада ядер Ри хорошо согласуются с теоретическими предсказаниями и существующими систематиками. Для изотопа ²²⁷ Ри можно проследить характерное для четно-нечетных ядер увеличение выживаемости по отношению к α -распаду.

Благодарности. Выражаем благодарность всем ученым, работающим в проекте GABRIELA. Особая благодарность доктору А. Лопес-Мартенс из Центра ядерных наук и материаловедения (Орсе, Франция) за полезные дискуссии.

Финансирование. Данная работа финансировалась за счет средств бюджета ОИЯИ и гранта ОМУС № 24-501-03 (присужденного А. А. Кузнецовой).

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. https://www.nndc.bnl.gov/nudat3/
- 2. Kuznetsova A. A. // Bull. Russ. Acad. Sci.: Phys. 2023. V. 87, No. 8. P. 1105-1111.
- 3. Еремин А. В., Попеко А. Г., Свирихин А. И. и др. // Письма в ЭЧАЯ. 2024. Т. 21, №3(254). С. 647–659.
- 4. Gulbekian G.G., Dmitriev S.N., Itkis M.G. // Phys. Part. Nucl. Lett. 2019. V.16, No.6. P. 866.
- 5. Lopez-Martens A. et al. (GABRIELA Collab.) // Eur. Phys. J. A. 2022. V.58, No.7. P. 134.
- Oganessian Yu. Ts., Utyonkov V.K., Popeko A.G. et al. // Nucl. Instr. Meth. A. 2022. V. 1033. P. 16640.
- Oganessian Yu. Ts., Utyonkov V.K., Popeko A.G. et al. // Nucl. Instr. Meth. A. 2023. V. 1048. P. 167978.
- 8. Sun M. D., Liu Z., Huang T. H. et al. // Phys. Rev. B. 2020. V. 800. P. 135096.
- 9. Andreyev A. N., Bogdanov D. D., Chepigin V. I. et al. // Z. Phys. A. 1991. V. 338. P. 363.
- Ninov V., Heβberger F.P., Armbruster P. et al. // Z. Phys. A. At. Nucl. 1990. V.336. P.473-474.
- Yeremin A. V., Andreyev A. N., Bogdanov D. D. et al. // Nucl. Instr. Meth. A. 1994. V. 350, No. 3. P. 608-617.
- 12. Andreev A. N., Bogdanov D. D., Chepigin V. I. et al. // Z. Phys. A. 1994. V. 347. P. 225.

- 13. Khuyagbaatar J., Heβberger F.P., Hofmann S. et al. // Eur. Phys. J. A. 2010. V. 46. P. 59.
- Mistry A. K., Khuyagbaatar J., Heβberger F. P. et al. // Nucl. Phys. A. 2019. V. 987. P. 337– 349.
- 15. Yang H., Zhao Z., Li X. et al. // Nucl. Phys. A. 2021. V. 1008. 122137.
- 16. Khuyagbaatar J., Yakushev A., Dullmann Ch. E. et al. // Phys. Rev. Lett. 2015. V. 115. 24250.

Получено 17 октября 2024 г.