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Stochastic realization of the wave function in quantum mechanics with the inclusion of soliton
representation of extended particles is discussed. Two-solitons conˇgurations are used for constructing
entangled states in generalized quantum mechanics dealing with extended particles, endowed with
nontrivial spin S. Entangled solitons construction being introduced in the nonlinear spinor ˇeld model,
the EinsteinÄPodolskyÄRosen (EPR) correlation is calculated and shown to coincide with the quantum
mechanical one for the 1/2-spin particles. The concept of stochastic q-bits is used for quantum
computing modelling.

�¡¸Ê¦¤ ¥É¸Ö ¸ÉμÌ ¸É¨Î¥¸± Ö ·¥ ²¨§ Í¨Ö ¢μ²´μ¢μ° ËÊ´±Í¨¨ ¢ ±¢ ´Éμ¢μ° ³¥Ì ´¨±¥ ´  μ¸´μ¢¥
¸μ²¨Éμ´´μ£μ ¶·¥¤¸É ¢²¥´¨Ö ¶·μÉÖ¦¥´´ÒÌ Î ¸É¨Í. „²Ö ¶μ¸É·μ¥´¨Ö § ¶ÊÉ ´´ÒÌ ¸μ¸ÉμÖ´¨° ¢ μ¡μ¡-
Ð¥´´μ° ±¢ ´Éμ¢μ° ³¥Ì ´¨±¥ ¶·μÉÖ¦¥´´ÒÌ Î ¸É¨Í ¸μ ¸¶¨´μ³ S ¨¸¶μ²Ó§Ê¥É¸Ö ¤¢ÊÌ¸μ²¨Éμ´´Ò¥ ±μ´-
Ë¨£Ê· Í¨¨. Šμ´¸É·Ê±Í¨Ö § ¶ÊÉ ´´ÒÌ ¸μ²¨Éμ´μ¢ ¢ ³μ¤¥²¨ ´¥²¨´¥°´μ£μ ¸¶¨´μ·´μ£μ ¶μ²Ö ¶·¨³¥´Ö-
¥É¸Ö ¤²Ö ¢ÒÎ¨¸²¥´¨Ö ¸¶¨´μ¢μ° ±μ··¥²ÖÍ¨¨ �°´ÏÉ¥°´ Ä�μ¤μ²Ó¸±μ£μÄ�μ§¥´  (���), ¨ ¶μ± § ´μ, ÎÉμ
μ´  ¸μ¢¶ ¤ ¥É ¸ ±¢ ´Éμ¢μ° ���-±μ··¥²ÖÍ¨¥° ¤²Ö Î ¸É¨Í ¸¶¨´  1/2. „²Ö ³μ¤¥²¨·μ¢ ´¨Ö ±¢ ´Éμ¢ÒÌ
¢ÒÎ¨¸²¥´¨° ¨¸¶μ²Ó§Ê¥É¸Ö ±μ´Í¥¶Í¨Ö ¸ÉμÌ ¸É¨Î¥¸±¨Ì ±Ê¡¨Éμ¢.

INTRODUCTION.
WAVE-PARTICLE DUALISM AND SOLITONS

As the ˇrst motivation for introducing stochastic representation of the wave function let
us consider the de Broglie plane wave

ψ = A e−ikx = A e−iωt+i(kr)

for a free particle with the energy ω, momentum k, and mass m, when the relativistic relation

k2 = ω2 − k2 = m2

holds (in natural units � = c = 1).
Suppose, following L. de Broglie [1] and A. Einstein [2], that the structure of the particle is

described by a regular bounded function u(t, r), which is supposed to satisfy some nonlinear
equation with the KleinÄGordon linear part. Let �0 = 1/m be the characteristic size of the
soliton solution u(t, r) moving with the velocity v = k/ω.
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Now it is worthwhile to underline the remarkable fact behind this research [3], namely,
the possibility to represent the de Broglie wave as the sum of solitons located at the nodes of
a cubic lattice with the spacing a � �0:

A e−ikx =
∑
d

u(t, r + d),

where d marks the positions of lattice nodes. To show this, one can take into account the
asymptotic behavior of the soliton in its tail region:

u(x) =
∫

d4k e−ikxg(k)δ(k2 − m2)

and then use the well-known formula

∑
d

ei(kd) =
(

2π

a

)3

δ(k).

1. SOLITONIAN SCHEME IN QUANTUM MECHANICS

The main goal of this paper is to show that special ®soliton¯ representation of quantum
mechanics (QM) is possible, with the conservation of all QM principles in the point-like
limit of particles, the spin-statistics correlation being included. The role of the one-particle
wave function in this solitonian scheme is played by the linear combination of solitons which
generalizes the aforementioned soliton representation of the de Broglie wave:

ΨN (t, r) = (�N)−1/2
N∑

j=1

ϕj(t, r). (1)

Here the EinsteinÄde Broglie idea to represent particles by regular solutions φ(t, r) to some
fundamental nonlinear equations is used. The complex function ϕ in (1) reads

ϕ(t, r) =
1√
2
(νφ + iπ/ν),

where

π(t, r) = ∂L/∂φt, φt = ∂φ/∂t,

is the conjugate momentum, and ν is the normalization constant, which is chosen from the
condition

� =
∫

d3x |ϕ|2,

with � being the Planck constant.
The index j in (1) runs over the set of independent (random) trials, the number N of

which is supposed to be very large (the frequency hypothesis by Mises). Thus, the formula
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(1) gives the stochastic realization of the wave function. To show that ΨN plays the role of
the probability amplitude, it is sufˇcient to calculate the integral

ρN =
1

�∨

∫
�∨⊂R3

d3x |ΨN |2 , (2)

which is taken over the small volume �∨ � ∨0, where ∨0 stands for the proper volume of
the soliton. It can be easily shown that with the probability P = 1 − α ∨0 /�∨, α ∼ 1, the
integral (2) equals to

ρN = �N/N�∨,

where �N is the number of trials, for which the centers of solitons are contained in �∨.
That is why ρN can be identiˇed with the coordinate probability density.

Now let us consider the measuring procedure for some observable A corresponding, due
to E. Noether's theorem, to the symmetry group generator M̂A. For example, the momentum
P is related to the generator of space translation M̂P = −i�, the angular momentum L is
related to the generator of space rotation M̂L = J and so on. As a result, one can represent
the classical observable Aj for the j-th trial in the form

Aj =
∫

d3xπjiM̂Aφj =
∫

d3xϕ∗
jM̂Aϕj .

The corresponding mean value is

E(A) ≡ 1
N

N∑
j=1

Aj =
1
N

N∑
j=1

∫
d3xϕ∗

jM̂Aϕj =
∫

d3xΨ∗
N ÂΨN + O

(
∨0

�∨

)
, (3)

where the Hermitian operator Â reads Â = �M̂A. Thus, up to the terms of the order
∨0/�∨ 	 1, we obtain the standard quantum mechanical rule (3) for the calculation of mean
values.

2. ENTANGLED SOLITONS

Now we consider two spinor solitons endowed with the spin 1/2 and construct the entan-
gled solitons conˇguration with the zero spin

ϕ12 =
1√
2

[
ϕ↑

1 ⊗ ϕ↓
2 − ϕ↓

1 ⊗ ϕ↑
2

]
, (4)

where ϕ↑
1 corresponds to the spin projection +1/2 and ϕ↓

2 corresponds to that −1/2. Finally,
one can construct, on the base of (4), the stochastic wave function (1) and calculate the
EPR-correlation of spins, which proves to coincide with the quantum one

P (a, b) = −(ab). (5)
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By virtue of the orthogonality relation for the states with the opposite spin projections, one
easily derives the following normalization condition for the entangled solitons conˇgura-
tion (4): ∫

d3x1

∫
d3x2 ϕ+

12ϕ12 = �
2.

Now it is not difˇcult to ˇnd the expression for the stochastic wave function (1) for the
singlet two-solitons state:

ΨN (t, r1, r2) =
(
�

2N
)−1/2

N∑
j=1

ϕ
(j)
12 , (6)

where ϕ
(j)
12 corresponds to the entangled solitons conˇguration in the j-th trial.

Our ˇnal step is the calculation of the spin correlation for the singlet two-solitons state.
In the light of the fact that in the standard EPR-correlation the operator σ corresponds to the
twice angular momentum operator, one should calculate the following expression:

P ′(a,b) = M

∫
d3x1

∫
d3x2 Ψ+

N2 (J1a) ⊗ 2 (J2b) ΨN , (7)

where M stands for the averaging over the random phases of the solitons. Inserting (6) into
(7), using the independence of trials j �= j′ and taking into account the relations:

J+ϕ↑ = 0, J3ϕ
↑ =

1
2
ϕ↑, J−ϕ↑ = ϕ↓,

J−ϕ↓ = 0, J3ϕ
↓ = −1

2
ϕ↓, J+ϕ↓ = ϕ↑,

(8)

where J± = J1 ± iJ2, one easily ˇnds that

P ′(a,b) = −(ab). (9)

Comparing the correlations (9) and (5), one remarks their coincidence, that is, the solitonian
model satisˇes the EPR-correlation criterium. This fact permits one to use the entangled
solitons conˇgurations (4) in stochastic representation (6) for constructing stochastic q-bits.

The main results, obtained within the scope of the solitonian scheme, are represented in
the papers [4Ä11].

3. STOCHASTIC Q-BITS AND SOLITONS

Now we intend to explain how stochastic q-bits (stobits) could be introduced into the
solitonian scheme via random phase mechanism. To this end, one should deˇne the random
phase Φj for the j-th trial in our system of n solitons-particles. Let ϕ(k)(r) denote the

standard (etalon) proˇle for the k-th soliton. The most probable position d(k)
j (t) of the k-th

soliton's center in j-th trial can be found from the following variational problem:
∣∣∣∣
∫

d3xϕ
∗(k)
j (t, r)ϕ(k)

(
r− d(k)

j

)∣∣∣∣ → max,
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thus giving the random phase structure:

Φj =
n∑

k=1

arg

∫
d3xϕ

∗(k)
j (t, r)ϕ(k)

(
r − d(k)

j

)
. (10)

The random phase (10) can be used for simulating quantum computing via generating the
following K random dichotomic functions:

fs(θs) = sign [cos(Φj + θs)] , s = 1, K, (11)

with θs being arbitrary ˇxed phases. Now recall that the quantum bit (q-bit) is identiˇed with
the state vector

|ψ〉 = α|0〉 + β|1〉,
corresponding to the superposition of two orthogonal states |0〉 and |1〉 as, for instance, two
polarizations of the photon, or two possible 1/2-spin states. Using the expression (5) for
1/2-spin correlation in a singlet state of two particles, one can compare it with the random
phases correlation for the case of n = 2 particles:

E (f1 f2) = 1 − 2
π
|�θ|, (12)

where �θ = θ1−θ2. The similarity of these two functions (5) and (12) of the angular variable
seems to be a good motivation for the K qÄbits simulation by the dichotomic random functions
(11), popularized in the paper [12].

In conclusion, we express the hope that the random solitons phases realization could be
effectively simulated by the generator of random numbers in classical computer. This very
simple model will be called the stochastic q-bits simulation. We hope that it will be useful
for the Shor's and Grover's quantum algorithms realization.
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