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ANALYTICAL SCHEME CALCULATIONS
OF ANGULAR MOMENTUM COUPLING

AND RECOUPLING COEFFICIENTS
A. Deveikis1, A. Kuznecovas

Department of Applied Informatics, Vytautas Magnus University, Kaunas, Lithuania

We investigate the Scheme programming language opportunities to analytically calculate the
ClebschÄGordan coefˇcients, Wigner 6j and 9j symbols, and general recoupling coefˇcients that are
used in the quantum theory of angular momentum. The considered coefˇcients are calculated by a direct
evaluation of the sum formulas. The calculation results for large values of quantum angular momenta
were compared with analogous calculations with FORTRAN and Java programming languages.

ˆ¸¸²¥¤ÊÕÉ¸Ö ¢μ§³μ¦´μ¸É¨ ¶·¨³¥´¥´¨Ö Ö§Ò±  ¶·μ£· ³³¨·μ¢ ´¨Ö Scheme ¤²Ö  ´ ²¨É¨Î¥¸±μ£μ
· ¸Î¥É  ±μÔËË¨Í¨¥´Éμ¢ Š²¥¡Ï Äƒμ·¤a´ , ±μÔËË¨Í¨¥´Éμ¢ ‚¨£´¥·  6j ¨ 9j ¨ ³ É·¨Í ¶·¥μ¡· -
§μ¢ ´¨Ö ¢μ²´μ¢ÒÌ ËÊ´±Í¨° ¸¢Ö§ ´´ÒÌ ³μ³¥´Éμ¢. � ¸Î¥É ±μÔËË¨Í¨¥´Éμ¢ ¶·μ¨§¢μ¤¨É¸Ö ¶·Ö³Ò³
¸Ê³³¨·μ¢ ´¨¥³ ¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì Ëμ·³Ê². ‚μ§³μ¦´μ¸É¨ · ¸Î¥É  ¤²Ö ¡μ²ÓÏ¨Ì §´ Î¥´¨° ³μ³¥´Éμ¢
¸· ¢´¨¢ ÕÉ¸Ö ¸ ¸μμÉ¢¥É¸É¢ÊÕÐ¨³¨ · ¸Î¥É ³¨ ¸ ¶·¨³¥´¥´¨¥³ Ö§Ò±μ¢ ¶·μ£· ³³¨·μ¢ ´¨Ö FORTRAN
¨ Java.

INTRODUCTION

The accurate and fast calculation of the angular momentum coupling and recoupling co-
efˇcients is required in various branches of quantum many-particle physics. Among the
most frequently used quantities of the quantum theory of the angular momentum are the
ClebschÄGordan coefˇcients, Wigner n−j symbols, and general angular momentum recoup-
ling coefˇcients [1]. Since the formulas for the angular momentum group coefˇcients include
an alternating sum, the derivation of acceptable, accurate values using 
oating point cal-
culations can sometimes be challenging, especially when the angular momentum arguments
are large. On the other hand, the analytical calculations (typically slower) can produce the
exact values for arbitrary large angular momenta. A number of papers have been pub-
lished on this topic recently. Stevenson [2] presented the Java Applets to analytically cal-
culate the ClebschÄGordan coefˇcients, 3j, 6j, and 9j symbols. Wei [3] has developed the
FORTRAN implementation of a suite of programs to calculate exactly the 3j, 6j, and 9j
symbols. Fritzsche implemented graphical rules to generate the sum formula expressing the
recoupling coefˇcient as a sum of products of the Wigner 6j and/or 9j symbols multiplied
by phase and square root factors within the framework of MAPLE [4].
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In the present paper we investigate the Scheme programming language opportunities to an-
alytically calculate the ClebschÄGordan coefˇcients, 6j, 9j symbols, and general recoupling
coefˇcients comparing to analogous calculations with FORTRAN and Java programming
languages. Since the angular momentum coupling and recoupling are the orthogonal trans-
formations, a precise arithmetic can be applied. Instead of calculations with real numbers,
which are connected with serious numerical instabilities, the calculations were performed with
numbers represented in the root rational fraction form a

√
b/(c

√
d), where a, b, c, and d are

integers. The Scheme programming language has the built-in functions for exact calculations
with extremely large numbers, such as addition, subtraction, multiplication, division, and
gcd. On the basis of these Scheme built-in functions we have developed the computational
procedures for a precise arithmetic with our root rational fraction expression of numbers.

1. ANALYTICAL EXPRESSIONS FOR ANGULAR
MOMENTUM COEFFICIENTS

A common algebraic expression for the ClebschÄGordan coefˇcient describing the cou-
pling of the angular momenta j1 and j2 with projections m1 and m2, respectively, to the total
angular momentum j with projection m is [1]

[
j1 j2 j
m1 m2 m

]
= δm1+m2,mΔ(j1, j2, j)

√
(j1 + m1)!(j1 − m1)!×

×
√

(j2 + m2)!(j2 − m2)!(j + m)!(j − m)!(2j + 1)×

×
∑

ν

[
(−1)ν

(j1 + j2 − j − ν)!(j1 − m1 − ν)!(j2 + m2 − ν)!
×

× 1
(j − j2 + m1 + ν)!(j − j1 − m2 + ν)!ν!

]
, (1)

where

Δ(j1, j2, j) =

√
(j1 + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)!

(j1 + j2 + j + 1)!
, (2)

and the sum runs over such (integer) values of ν that no factorial in the sum has a negative
argument. The ClebschÄGordan coefˇcients obey the orthogonality relations

∑
jm

[
j1 j2 j
m1 m2 m

] [
j1 j2 j
m′

1 m′
2 m

]
= δm1,m′

1
δm2,m′

2
(3)

and ∑
m1,m2

[
j1 j2 j
m1 m2 m

] [
j1 j2 j′

m1 m2 m′

]
= δj,j′δm,m′ (4)

that can be utilized in checking the computed ClebschÄGordan coefˇcients.
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The algebraic expression for the Wigner 6j symbol can be presented as follows [5]:

{
j1 j2 j12
j3 j j32

}
=

⎡
⎢⎢⎣

∏
nm

(βn − αm)!

∏
n

(αn + 1)!

⎤
⎥⎥⎦

1/2 ∑
ν

(−1)ν(ν + 1)!∏
n

(ν − αn)!
∏
m

(βm − ν)!
, (5)

where

α1 = j1 + j2 + j12, α2 = j1 + j + j32, α3 = j3 + j2 + j32, α4 = j + j3 + j12,

β1 = j1 + j2 + j3 + j, β2 = j1 + j12 + j3 + j32, β3 = j + j12 + j2 + j32.

As in the case of ClebschÄGordan coefˇcient expansion, the sum in the 6j symbol runs over
such values that the arguments of the factorials in the sum are not negative. The orthogonality
condition for the Wigner 6j symbols reads [5]

∑
j32

(2j32 + 1)
{

j1 j2 j12
j3 j j32

}{
j1 j2 j′12
j3 j j32

}
= (2j12 + 1)−1δj12j′12

. (6)

In the case of the Wigner 9j symbol we employ the following sum of products of the
Wigner 6j symbols [5]:⎧⎨
⎩

j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬
⎭ =

∑
x

(−1)2x

{
j1 j2 j12
j34 j x

}{
j3 j4 j34
j2 x j24

}{
j13 j24 j
x j1 j3

}
.

(7)
The orthogonality condition for the Wigner 9j symbols is [5]

∑
j13j24

(2j13 + 1)(2j24 + 1)

⎧⎨
⎩

j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬
⎭

⎧⎨
⎩

j1 j2 j′12
j3 j4 j′34
j13 j24 j

⎫⎬
⎭ =

=
{

0, if j12 �= j′12 or j34 �= j′34,
1, if j12 = j′12 and j34 = j′34.

(8)

The general angular momentum recoupling coefˇcients usually describe the transformation
between two different coupling schemes of the angular momenta of subsystems. It is well
known that the general angular momentum recoupling coefˇcients with the arbitrary number
of the angular momenta can be written explicitly in terms of the ClebschÄGordan expansion.
This can be illustrated with the following example:

〈((j1, j2)j12, j3)j|((j3, j2)j32, j1)j〉 =

=
1

(2j + 1)

∑
m1m2m3
m12m32m

[
j1 j2 j12
m1 m2 m12

] [
j12 j3 j
m12 m3 m

]
×

×
[

j3 j2 j32
m3 m2 m32

] [
j32 j1 j
m32 m1 m

]
, (9)
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where j1, j2 and j3 are the intermediate angular momenta which can, in principle, be coupled
to the total angular momentum j in any other way, different from that in the bra- and
ket-vectors in the above expression. In our case the orthogonality condition takes the form∑

j32

〈((j1, j2)j12, j3)j|((j3, j2)j32, j1)j〉 〈((j1, j2)j′12, j3)j|((j3, j2)j32, j1)j〉 = δj12j′12
. (10)

Expression (9) can be straightforwardly generalized in the case of the arbitrary number and
the coupling scheme of angular momenta.

2. CALCULATIONS AND RESULTS

The Scheme programs to calculate the analytical and decimal values of the ClebschÄGordan
coefˇcients, Wigner 6j and 9j symbols, and general recoupling coefˇcients were tested by
calculating their orthogonality conditions. The orthogonality conditions, when calculating
with values of actual angular momenta, were checked for the ClebschÄGordan coefˇcients in
the range from 0 to 6 (4), the 6j symbols in the range from 0 to 9/2 (6), the 9j symbols in
the range from 0 to 5/2 (8), and the recoupling coefˇcients in the range from 0 to 7/2 (10),
respectively. We examined all the coefˇcients presented in [2, 3]. The test calculations were
performed on Pentium 1.8 GHz PC with 512 MB RAM. The Scheme programs for coefˇcient
calculation were run on DrScheme, version 209, the FORTRAN programs were run on Fortran
PowerStation 4.0, and the Java programs were run on Java version 1.5.0.

The comparison of 6j symbols (5) calculation results in FORTRAN and Scheme imple-
mentation is given in Table 1. For the sake of simplicity, all arguments of 6j symbol are
taken to be equal. It should be noted that for large angular momenta the exact values of
coefˇcients could easily extend over a few pages. So, only the decimal values of coefˇcients
are presented in the second and last columns of Table 1. The FORTRAN calculations were
performed by double precision: 14 or 15 digits. The accuracy of 
oating point FORTRAN
calculations was estimated by taking the absolute value of difference between the FORTRAN
and Scheme calculations results divided by the Scheme calculations result. It follows from the
comparison of the obtained results that the accuracy of FORTRAN calculations of 6j symbol
becomes unacceptable when js = 100. At the same time, the Scheme calculations may be
extended much further. For example, the value of 6j symbol −8.61809929811167 · 10−7 for
all j = 5000 is calculated in 63.4 s.

Table 1. Comparison of 6j symbols calculation results in FORTRAN and Scheme implementation.
All arguments of 6j symbol are taken to be equal. The accuracy of �oating point FORTRAN calcu-
lations |(F − S)/S| is estimated by taking the absolute value of difference between the FORTRAN
and Scheme calculation results divided by the Scheme calculation result

{j} FORTRAN 6j Scheme 6j |(F − S)/S|

25 −2.15120051803826 · 10−3 −2.15120051803799 · 10−3 1.26 · 10−13

50 −1.12137491501702 · 10−4 −1.12137492362641 · 10−4 7.68 · 10−9

75 5.15978406800945 · 10−4 5.15980222695226 · 10−4 3.52 · 10−6

100 −4.52196611139888 · 10−4 −4.69841623298744 · 10−4 3.76 · 10−2

125 7.65222331093793 · 10−2 2.69974303182709 · 10−4 2.82 · 10+2
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We use the formula for 9j symbol that is based on 6j symbols according to Eq. (7). So, the
accuracy of 9j symbols depends on the accuracy of 6j symbols. However, the applicability of

oating point calculations for 9j symbols depends strongly on their particular argument values
as well. For example, for arguments j1 = 64, j2 = 62.5, j3 = 61.5, j4 = 61, j12 = 114.5,
j34 = 112.5, j13 = 113.5, j24 = 110.5, j = 60 the FORTRAN implementation gives
−3.709024463470847 · 10−35, when the true value produced by the Scheme implementation
is −3.414079100555198 · 10−39. Using his own number representations (the prime and

32768-base number representations), Wei [3] calculates the 9j symbol

⎧⎨
⎩

100 80 50
50 100 70
60 50 100

⎫⎬
⎭

in 0.517 s on the DEC 3000/400 AlphaStation running Unix. The Scheme implementation for
this 9j symbol requires 3.5 s. It should be noted that Wei's approach does not involve the
built-in functions of the programming language for exact calculations with extremely large
numbers, and therefore it will not beneˇt from a future development of the programming
language.

Formula (1) for ClebschÄGordan coefˇcients is sufˇciently accurate up to very large values
of quantum angular momenta. For example, the ClebschÄGordan coefˇcient[

2500 2500 5000
2488 2400 4888

]
= 7.604624771558097 · 10−10 is calculated by FORTRAN imple-

mentation in 0.04 s with accuracy 5.82 · 10−12. The Scheme implementation may calculate
this coefˇcient in 3 s and the result contains 97.231 characters.

However, the high accuracy of formula (1) for ClebschÄGordan coefˇcients does not
lead to the high accuracy of general recoupling coefˇcients (9). The accuracies of general
recoupling coefˇcients, as presented in Table 2, are signiˇcantly lower than the accuracies
of analogous 6j symbols. It should be noted that the time needed for calculating general
recoupling coefˇcients is signiˇcantly larger than the time needed for calculating analogous
6j symbols as well. The comparison of calculation times is given in Table 2.

Table 2. Comparison of time needed for calculation of general recoupling coefˇcients (GRC) and 6j

symbols in FORTRAN and Scheme implementation. All arguments j of coefˇcients are taken to be
equal. The accuracy of �oating point FORTRAN calculations |(F − S)/S| is estimated by taking
the absolute value of difference between the FORTRAN and Scheme calculation results divided by
the Scheme calculation result

{j} FORTRAN, s Scheme, s |(F − S)/S|
GRC 6j GRC 6j GRC 6j

50 1.9 5.4 · 10−6 444 3.4 · 10−3 1.45 · 10−8 7.68 · 10−9

75 3.7 7.3 · 10−6 2451 6.1 · 10−3 1.45 · 10−4 3.52 · 10−6

100 8.8 9.8 · 10−6 24195 9.5 · 10−3 1.35 · 10+1 3.76 · 10−2

The Java as well as Scheme programming language has the built-in functions for operating
with extremely large numbers and can successfully cope with the problems of over
ow
associated with the calculation of large factorials involved in the analytical calculation of
angular momentum group coefˇcients. However, the Java language efˇciency for exact
angular momentum coefˇcients calculation is signiˇcantly lower than that of Scheme. For
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example, the time taken for calculation of 6j symbol with all arguments equal to 1000 is
216 s. The Scheme implementation needs for this 6j symbol signiˇcantly smaller time, 0.89 s.

CONCLUSION

We have presented the Scheme calculations of analytical and decimal values of the
ClebschÄGordan coefˇcients, Wigner 6j and 9j symbols, and general recoupling coefˇcients.
It was established that Java programs for analytical calculations of angular momentum coefˇ-
cients run signiˇcantly slower than Scheme programs given the same formulae implemented
in both languages. As a rule, the 
oating point calculations are signiˇcantly faster than
analytical calculations. However, the accuracy of 
oating point calculations of Wigner 6j
and 9j symbols, and general recoupling coefˇcients becomes unacceptable for values of the
arguments larger than 75. It should be noted that the accuracy of 
oating point calculations
of ClebschÄGordan coefˇcients for large values of the arguments is quite satisfactory. The
time needed for calculation of general recoupling coefˇcients is signiˇcantly larger than the
time needed for calculation of analogous 6j symbol. It implies that for analytical calculations
it makes sense to use 6j expansions [4]. At the same time, the general recoupling coefˇcients
may be preferable for numerical calculations with small arguments. The presented results
show that the calculation speed of Scheme programs is sufˇciently high and there are liter-
ally no other limitations on the arguments given to the Scheme programs than those due to
computer resources and time needed for evaluation of the sum formulae.
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