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BOSEÄEINSTEIN CORRELATIONS OF NEUTRAL
GAUGE BOSONS IN pp COLLISIONS

G.A. Kozlov
Joint Institute for Nuclear Research, Dubna

The theory for BoseÄEinstein correlations in case of neutral gauge bosons in pp collisions at high
energies is presented. Based on quantum ˇeld theory at ˇnite temperature, the two-particle BoseÄ
Einstein correlations of neutral gauge bosons are carried out for the ˇrst time. As a result, the important
parameters of the correlation functions can be obtained for the Z0Z0 pairs.
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INTRODUCTION

An investigation of the space-time extension or even squeezing of particle sources via
the multiparticle quantum-statistics correlation in high-energy interactions still attracts the
attention of physical society in both experiment and theory. Over the past few decades,
a considerable number of successful studies have been done in this direction [1]. It is
well understood that the studies of correlations between produced particles, the effects of
coherence and chaoticity, an estimation of particle-emitting source size play an important role
in high-energy physics.

By studying the BoseÄEinstein correlations (BEC) of identical particles (we mean like-
sign charge-particles and the neutral charges ones), it is possible experimentally to determine
the time scale and spatial region over which particles do not have the interactions. Such a
surface is called decoupling one. In fact, for an evolving system such as pp collisions, it is
not really a surface, since at each time there is a spread out surface due to 
uctuations in the
last interactions, and the shape of this surface evolves even in time. The particle source is
not approximately constant because of energy-momentum conservation constraint.

More than half a century ago Hanbury-Brown and Twiss [2] used BEC between photons
to measure the size of distant stars. In the works [3Ä10], the master equations for evolution of
thermodynamic system that can be created at the ˇnal state of a high-multiplicity process were
established. The equations have the form of the ˇeld operator evolution equation (Langevin-
like [11]) and allow one to gain the basic features of the emitting source space-time structure.
In particular, it has been conjectured and further conˇrmed that the size of the emitting source
through BEC is strongly affected by nonclassical off-shell effect.
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The shapes of BEC function were experimentally established in the LEP experiments
ALEPH [12], DELPHI [13] and OPAL [14], and by ZEUS collaboration at HERA [15],
which also indicated a dependence of the measured correlation radius on the hadron (π, K)
mass. The results for π±π± and π±π∓ correlations with pp̄ collisions at

√
s = 1.8 TeV were

published by E735 collaboration in [16].
The correlations between heavy particles (e.g., neutral gauge bosons Z0Z0) of BoseÄ

Einstein type have not been carried out previously at hadron colliders. Such a study can be
addressed to the Large Hadron Collider (LHC) which provides protonÄproton interactions at√

s = 14 TeV centre-of-mass system (c.m.s.) energy.
In this work, we make an attempt to demonstrate that the problem of properties of

the genuine interactions can be explored using experimental data which can be collected
by ATLAS and CMS collaborations at the LHC. These data can be analyzed through the
compared measures of some inclusive distributions and ˇnal-state correlations.

One of the aims of this paper is to make the proposal for the experimental measurements
of the Z0Z0-pair correlations.

This exploration will be theoretically supported by the quantum ˇeld theory at ˇnite
temperature (QFTβ) model approach [3Ä8]. It is known that the effective temperature of the
vacuum or the ground state or even the thermalized state of particles distorted by external
forces is occurring in models quantized in external ˇelds. One of the main parameters of the
model is the temperature of the particle source under the random source operator in
uence.
The main channels are the dilepton production pp → Z0Z0 → 2e−2e+, 2μ−2μ+, e−e+μ−μ+

in pp collisions.
An efˇcient selection of leptons needs to be performed according to the following criteria.

First, all leptons were required to lie in the pseudorapidity range covered by, e.g., the CMS
muon system, that is |η| � 2.4. Second, the leptons were required to be unlikely charged in
pairs. Note that the acceptances of another multipurpose detector ATLAS in the azimuthal
angle and pseudorapidity are close to the respective parameters of CMS.

The dilepton channel is especially promising from the experimental point of view, since
it is expected that the experimental facilities related for LHC (CMS and ATLAS detectors)
will make it possible to record muons of energy in the TeV range with a resolution of about
a few percent and an efˇciency close to 100%. Moreover, this channel is characterized by a
maximum signal-to-background ratio in the energy region being considered.

1. BEC IN CASE OF TWO PARTICLES

A pair of identical bosons with the mass m produced incoherently (in ideal nondisturbed,
noninteracting cases) from an extended source will have an enhanced probability C2(p1, p2) =
N12(p1, p2)/[N1(p1)N2(p2)] to be measured in terms of differential cross section σ, where

N12(p1, p2) =
1
σ

d2σ

dΩ1 dΩ2
(1)

to be found close in 4-momentum space �4 when detected simultaneously, as compared to
the case where they are detected separately with

Ni(pi) =
1
σ

dσ

dΩi
, dΩi =

d3pi

(2π)3 2Epi

, Epi =
√

p2
i + m2, i = 1, 2. (2)
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On the other hand, the following relation can be used to retrieve the BEC function C2(Q):

C2(Q) =
N(Q)

N ref(Q)
, (3)

where N(Q) in general case refer to the numbers for neutral gauge bosons (e.g., Z0Z0) with

Q =
√
−(p1 − p2)μ(p1 − p2)μ =

√
M2 − 4m2. (4)

In deˇnitions (3) and (4), N ref is the number of particle pairs without BEC and pμi = (ωi,pi)

are four-momenta of produced bosons (i = 1, 2); M =
√

(p1 + p2)2μ is the invariant mass of

the pair of bosons.
An essential problem in extracting the correlation is the estimate of the reference distri-

bution N ref(Q) in Eq. (3). If there are other correlations besides the BoseÄEinstein effect,
the distribution N ref(Q) should be replaced by a reference distribution corresponding to the
two-particle distribution in a geometry without BEC. Hence, expression (3) represents the
ratio between the number of Z0Z0 pairs N(Q) in the real world and the reference sample
N ref(Q) in the imaginary world. Note that the reference sample cannot be directly observed
in an experiment. Different methods are usually applied for the construction of reference
samples [1]; however, all of them have strong restrictions. One of the preferable methods
is to construct the reference samples directly from data. For our aim for reference sample
N ref(Q), it is suitable to use the pairs Z0Z0 from different (mixed) events.

It is commonly assumed that the maximum of two-particle BEC function C2(Q) is 2 for
p1 = p2 if no any distortion and ˇnal state interactions are taken into account.

There are experimental difˇculties in a determination of Z0Z0 correlations, which are
associated with acceptance limitations and limited statistics in the Z0Z0 sample.

In general, the shape of the BEC function C2(Q) is model-dependent. The most simple
form of Goldhaber-like parameterization for C2(Q) [17, 18] has been used for data ˇtting:

C2(Q) = C0(1 + λ e−Q2R2
)(1 + εQ), (5)

where C0 is the normalization factor; λ is the so-called chaoticity strength factor, meaning
λ = 1 for fully incoherent and λ = 0 for fully coherent sources; the parameter R is interpreted
as a radius of the particle source, often called the correlation radius, and assumed to be
spherical in this parameterization. The linear term in (5) is supposed to be accounted within
the long-range correlations outside the region of BEC. Note that distribution of bosons can
be either far from isotropic, usually concentrated in some directions, or almost isotropic, and,
what is important, in both cases the particles are under the random chaotic interactions caused
by other ˇelds in the thermal bath. In the parameterization (5) all of these problems are
embedded in the random chaoticity parameter λ. To advocate formula (5) it is assumed:

a) incoherent average over particle source where λ serves to account for:
Å partial coherence,
Å long-lived resonances associated with multiple distinguishable sources,
Å Z0Z0 purity;
b) spherical Gaussian density of particle emission cell (with radius R);
c) static source which means no time (energy) dependence.
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In order to save the quantum pattern of particle production process and to avoid the static
and undistorted character of particle emitter source, we also suggest using the C2(Q) function
within QFTβ accompanied by quantum evolution approach in the form:

C2(Q) = ξ(N)

[
1 +

1
(1 + α)(1 + α′)

Ω̃(Q) +
2
√

αα′

(1 + α)(1 + α′)

√
Ω̃(Q)

]
F (Q, Δx), (6)

where ξ(N) depends on the multiplicity N as

ξ(N) =
〈N(N − 1)〉

〈N〉2 . (7)

The function F (Q, Δx) that expresses the correlation magnitude as a function of Q and two-
particle relative distance Δx is a consequence of the Bogolyubov principle of correlations
weakening at large distances [19]:

F (Q, Δx) =
f(Q, Δx)

f(p1) · f(p2)
= 1 + rf Q + . . . (8)

The function (8) is normalized as F (Q, Δx = ∞) = 1, and rf is the measure of correlations
weakening where rf → 0 as Δx → ∞; f(Q, Δx) is the two-particle distribution function
with Δx, while f(pi) are one-particle probability functions with i = 1, 2.

The important parameter α (as well as α′) in (6) summarizes our knowledge of other than
space-time characteristics of the particle-emitting source, and plays the role of a coherence
parameter (see [10] for details).

The Ω̃(q) in (6) has the following structure in momentum space:

Ω̃(Q) = Ω(Q)γ(n), (9)

where
Ω(Q) = exp (−Δp�) = exp [−(p1 − p2)μ �μν (p1 − p2)ν ] (10)

is the smearing smooth dimensionless generalized function, �μν is the (nonlocal) structure
tensor of the space-time size (BEC formation domain), and it deˇnes the spherically similar
domain of emitted (produced) bosons.

To clarify with γ(n) in (9) let us emphasize that most of experiments dealing with
elementary particles at high energies are inclusive as one measures quantum effect of BEC
only on limited samples of particles produced. The unobserved part of the rest particle system
acts then as a kind of thermal (heat) bath in
uencing measured samples of data (observables).
Actually, the temperature T , being the most important parameter describing the in
uence of
such a thermal bath, occurs in this model.

The function γ(n) re
ects the quantum thermal features of BEC pattern and is deˇned as

γ(n) =
n2(ω̄)

n(ω) n(ω′)
, n(ω) ≡ n(ω, β) =

1
e(ω−μ)β − 1

, ω̄ =
ω + ω′

2
, (11)

where n(ω, β) is the mean value of quantum numbers for BoseÄEinstein statistics particles
with the energy ω and the chemical potential μ in the thermal bath with statistical equilibrium
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at the temperature T = 1/β. The condition
∑

f

nf (ω, β) = N is evident, where the discrete

index f re
ects the one-particle state f .
In terms of time-like R0, longitudinal RL and transverse RT components of the space-time

size Rμ, the distribution Δp� looks like

Δp� → ΔpR = (Δp0)2R2
0 + (ΔpL)2R2

L + (ΔpT )2R2
T . (12)

Seeking for simplicity, one has (RL = RT = R)

ΔpR = (p0
1 − p0

2)
2R2

0 + (p1 − p2)2R2 (13)

for identical bosons.
Hence, we have introduced a new parameter Rμ, a 4-vector, which deˇnes the region of

nonvanishing particle density with the space-time extension of the particle emission source.
Expression (10) must be understood in the sense that Ω(Q) is a function that in the limit
R → ∞ strictly becomes a δ function. For practical using with ignoring the energy-momentum
dependence of α, and assuming that α′ = α (α is related with C2(0) and N ), we get the
expression with Ω(Q) 	 exp (−Q2 R2):

C2(Q) 	 ξ(N)
{

1 + λnew(β) e−Q2R2
[
1 + λcorr(β) e+Q2R2/2

]}
, (14)

where the new intercept function becomes λnew = γ(ω, β)/(1 + α)2, and the new coher-
ence correction in the brackets of Eq. (14) carries an additional intercept function λcorr =
2 α/

√
γ(ω, β). In fact, since α 
= α′ (because ω 
= ω′ and, therefore, the number of states

identiˇed here with the number of particles n(ω) with given energy is also different), one
can use the general precise form (6) for C2 with details given by Eqs. (9) and (11) and with
α coherence function depending on the particle mass, the energy of ˇnal leptons produced
in pairs within the decays of Z0's and such characteristics of the emission process as the
temperature T and chemical potential μ occurring in the deˇnition of n(ω) in (11).

Since we did not follow special assumptions on the quantum operator level for C2(Q)
from the initial stage, it may correspond to a physically real and observable effect at the LHC.
This pattern may lead to a new squeezing state of correlation region.

2. STOCHASTIC FIELD AND GREEN FUNCTION

Let us consider the stochastic ˇeld Bμ(x) = Bμs̃(x, τ) that depends on the arbitrary
random source s̃(x), and the ˇfth component τ means the ®stochastic time¯. The differential
equation of an evolution of the ˇeld operator Bμs̃(x, τ) = Bμ(x, τ) in the system under the
associated stochastic process is

∂τBμ(x, τ) = O[Bμ(x, τ)], (15)

where O[Bμ(x, τ)] is the differential stochastic operator, which has the form

O[Bμ(x, τ)] = − 1
V

δJ [Bμ(x, τ)]
δBμ(x, τ)

+ s̃μ(x, τ) (16)
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with a volume V being introduced by dimensional reason. The r.h.s. of Eq. (16) is the

so-called stochastic operator where J =
∫

d4yL[Bμ(y), ∂νBμν(y)] is the action deˇned

by the Lagrangian density L; s̃μ(x, τ) = sμ(x, τ) + nμP carries the random stochastic
history where the memory dissipation forces and the heat bath effects are included into
sμ(x) = sμ(x, τ), the constant P emerges within the action of the stationary forces. Equation
(15) is nothing but the evolution equation of the Langevin type applied already to stochastic
processes on the quantum operator level in derivation of multiparticle BoseÄEinstein corre-
lations [3Ä10].

For simplicity, we assume that s̃μ(x) varies stochastically with the Gaussian correlation
function

〈s̃μ(x)s̃ν(y)〉 = const δμν exp (−z2/l2ch), (17)

where zν = (x − y)ν , and const is the strength of the noise described by the distribution
function exp (−z2/l2ch) with lch being the noise characteristic scale. Both const and lch deˇne
the in
uence of the (Gaussian) noise on, e.g., correlations between particles that ®feel¯ an
action of an environment. Actually, Eq. (15) can be transferred to the standard ˇeld equation
of motion (in Euclidean space)

1
V

δJ [Bμ(x)]
δBμ(x)

= s̃μ(x) (18)

with the source s̃μ(x) if both Bμ and s̃μ do not depend on ®stochastic time¯ τ . In classical
theory, the random process given by s̃μ(x) is nothing but the white (Gaussian) noise.

In this paper, we focus on the role of particle masses and energies, effects of coherence and
distortion, and the heat bath in
uences which are rather important to describe the correlations
between particles. To solve this problem, especially to derive the memory term in evolution
equation, one can use the general properties of QFTβ . The model is deˇned by the following
generating functional in four-dimensional space-time:

Z =
∫

DBμ exp
[
−i

∫
d4xL(Bμ, Bμν)

]
, (19)

where

L = −1
4
BμνBμν +

1
2
(m2 + U)BμBμ (20)

with Bμν = ∂μBν − ∂νBμ.
The direct calculations using the solution of Eq. (15) with the Lagrangian density (20)

leads to the propagator of the ˇeld Bμ(x, τ) distorted by s̃μ(x, τ). The transverse part of
Bμ(x, τ) will give the correct expression for the Euclidean vector ˇeld propagator at τ → ∞.

We are working with ˇelds that correspond to a thermal ˇeld Bμ(x) with the standard
deˇnition of the Fourier transformed propagator F [G̃μν(p)]:

F [G̃μν(p)] = Gμν(x − y) = Tr {T [Bμ(x)Bν(y)]ρβ} (21)
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with ρβ = e−βH/Tr e−βH being the density matrix of a local system in equilibrium at
temperature T under the Hamiltonian H :

H =
∫

d3p
(2π)32p0

p0
3∑

λ=1

bλ+
(p)bλ(p) (22)

with the operators of annihilation bλ(p) and creation bλ+
(p) to be deˇned later.

The interaction of Bμ(x) with the external ˇeld is given by the potential U . The equation
of motion is

(∇2 + m2)Bμ(x) = −Jμ(x), (23)

where Jμ(x) = UBμ(x) is the source density operator. A simple model like this allows one to
investigate the origin of the unstable state of the thermalized equilibrium in a nonhomogeneous
external ˇeld under the in
uence of source density operator Jμ(x) = UBμ(x). For example,
the source can be considered as δ-like generalized function Jμ(x) = μ̃ ρ(x, ε)Bμ(x) in which
ρ(x, ε) is a δ-like succession giving the δ function as ε → 0 (where μ̃ is some massive
parameter). This model is useful because the δ-like potential U(x) provides the conditions
for restricting the particle-emission domain (or the deconˇnement region). We suggest the
following form:

Jμ(x) = −Jsyst(x)Bμ(x) + JRμ(x), (24)

where the source Jμ(x) is a sum of a regular systematic motion part Jsyst(x) and the random
source JRμ(x). The equation of motion (23) becomes

[∇2 + m2 − Jsyst]Bμ(x) = −JRμ(x), (25)

and the propagator satisˇes the following equation (in the Fourier transformed form labeled
by tilde):

[p2
μ − m2 + J̃syst]G̃μν(pμ) = d̃μν(p), (26)

where

dμν(x) =
(

gμν +
1

m2

∂2

∂xμ∂xν

)
δ(x). (27)

As the standard point, the Green function of the vector ˇeld can be obtained from one of the
scalar ˇelds acted upon by the relevant operator gμν + m−2∂2/(∂xμ∂xν).

The solution of Eq. (23) is

Bμ(x) = −
∫

dy Gμν(x, y)JRν (y), (28)

where the Green function obeys Eq. (26).

3. GREEN FUNCTION AND KERNEL OPERATOR

Let us go to the thermal ˇeld operator Bμ(x) by means of the linear combination of the

frequency parts B1
μ(x) and B2+

μ (x):

Bμ(x) = B1
μ(x) + B2+

μ (x) (29)
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with [Bμ(x), Bν (y)] = iDμν(x − y) and

B1
μ(x) =

∫
d3p

(2π)32(p2 + m2)1/2

3∑
λ=1

ε(λ)
μ (p)b̃(λ)(p) e−ipx,

B2+

μ (x) =
∫

d3p
(2π)32(p2 + m2)1/2

3∑
λ=1

ε(λ)
μ (p)b̃(λ)+(p) eipx.

The following properties of polarization vectors are the standard ones:

ε(λ)
μ (p)ε(λ

′)
μ (p) = gλλ′ ,

3∑
λ=1

ε(λ)
μ (p)ε(λ)

ν (p) = −gμν +
pμpν

m2
.

We assume that the deviation from the asymptotic free state given by the operator a(p, t) is
provided by the random operator r(p, t) : a(p, t) → b(p, t) = a(p, t)+ r(p, t). The operators

b̃(λ)(p) and b̃(λ)+(p) obey the following equations in �4 (see details in [3Ä8]):

[ω − K̃(p)]b̃(λ)(p) = F̃ (p) + ρ(ωP , ε), (30)

[ω − K̃+(p)]b̃(λ)+(p) = F̃+(p) + ρ∗(ωP , ε), (31)

where pμ = (ω = p0,p). Both equations (30) and (31) can be transformed into new equations

for the frequency parts B1
μ(x) and B2+

μ (x)

i∂0B
1
μ(x) +

∫
�4

K(x − y)B1
μ(y)dy = fμ(x), (32)

−i∂0B
2+

μ (x) +
∫
�4

K+(x − y)B2+

μ (y)dy = f+
μ (x), (33)

where

fμ(x) =
∫

d3p
(2π)32(p2 + m2)1/2

3∑
λ=1

ε(λ)
μ (p)[F̃ (p) + ρ(ωP , ε)] e−ipx, (34)

f+
μ (x) =

∫
d3p

(2π)32(p2 + m2)1/2

3∑
λ=1

ε(λ)
μ (p)[F̃+(p) + ρ∗(ωP , ε)] eipx. (35)

The equations for ˇeld components B1
μ(x) and B2+

μ (x) (32) and (33), respectively, are
nonlocal within the presence of the form factors K(x − y) and K+(x − y), respectively. In
principle, these form factors can admit the description of locality for nonlocal interactions. At
this stage, it must be stressed that we have new generalized evolution equations (32) and (33),
which retain the general features of the propagating and interacting of the quantum vector
ˇelds with mass m that are in the heat bath (thermal reservoir) and are chaotically distorted
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by other ˇelds. For further analysis, let us rewrite the system of Eqs. (32) and (33) in the
following form:

i∂0B
1
μ(x) + K(x) � B1

μ(x) = fμ(x), (36)

−i∂0B
2+

μ (x) + K+(x) � B2+

μ (x) = f+
μ (x), (37)

where A(x) � B(x) is the convoluted function of the generalized functions A(x) and B(x).
Applying the direct Fourier transformation to both sides of Eqs. (36) and (37) with the
following properties of the Fourier transformation:

F [K(x) � Bi
μ(x)] = F [K(x)] F [Bi

μ(x)] (i = 1, 2+),

we get two equations

[p0 + K̃(p)]B̃1
μ(p) = F [fμ(x)], (38)

[−p0 − K̃+(p)]B̃2+

μ (p) = F [f+
μ (x)]. (39)

Finally, we have got the following equation for B̃μ(p) ˇeld:

[−p0 + K̃+(p)][p0 + K̃(p)]B̃μ(p) = T̃μ(p), (40)

where

T̃μ(p) = [−p0 + K̃+(p)]F [fμ(x)] + [p0 + K̃(p)]F [f+
μ (x)].

We are now at the stage of the main strategy: one has to identify the ˇeld Bμ(x) and the
random source operator JRμ(x), introduced in Eq. (25), with the Fourier transformed ˇeld

B̃μ(p) and T̃ (p) in (40), respectively.

The next step is our requirement that Green function G̃μν(p) in Eq. (26) and the function
Γμν(p), satisfying the equation

[−p0 + K̃+(p)][p0 + K̃(p)]Γ̃μν(p) = gμν , (41)

must be equal to each other, i.e.,

F [G̃μν(p) − Γ̃μν(p)] = 0.

The kernel operator K̃(p) is

K̃(p) 	 ε

√
1 +

m2

ε2
, (42)

where ε = 2
√

k2
l + m2

l is the total energy of the ˇnal leptonÄantilepton pair (with momentum
kl and the mass ml for the lepton) produced within the decay of Z0 boson being in the rest
frame. To get K̃(p) in the form (42), we used the fact that the full Green function G̃μν(p)
is given by the corresponding full Green function of the scalar ˇeld [20] under the action by
the differential operator (gμν − m−2 pμ pν).
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4. SOURCE SIZE

It has been emphasized [10] that there are two different scale parameters in the model
considered here. One of them is the so-called ®correlation radius¯ R introduced in (5) and
(6) with (12). In fact, this R parameter gives the pure size of the particle emission source
without the external distortion and interaction coming from other ˇelds. The other (scale)
parameter is the stochastic scale Lst which carries the dependence of the particle mass, the
α-coherence degree and, what is very important, the temperature T -dependence:

Lst 	
[

1

α(N) |p0 − K̃(p)|2 n(m, β)

]1/2

→
[

1

α(N) 4k2
l |1 − δk|2 n̄(m, β)

]1/5

, (43)

where

δk =

√
1 +

m2

4k2
l

and the lepton mass ml is neglected.
It turns out that the scale Lst deˇnes the range of stochastic forces. This effect is given by

α(N)-coherence degree which can be estimated from the experiment within the two-particle
BEC function C2(Q) when Q is close to zero, C2(0), at ˇxed value of mean multiplicity 〈N〉:

α(N) 	 2 − C̄2(0) +
√

2 − C̄2(0)
C̄2(0) − 1

, C̄2(0) =
C2(0)
ξ(N)

. (44)

In formula (43), n̄(m, β) is the thermal relativistic particle number density:

n̄(m, β) = 3
∫

d3p
(2 π)3

n(ω, β) = 3
μ2 + m2

2 π2
T

∞∑
l=1

1
l
K2

(
l

T

√
μ2 + m2

)
, (45)

where K2(. . .) is the modiˇed Bessel function.
The coherence function α is another very important one that summarizes our knowledge

of other than space-time characteristics of the particle emission source, and the prediction of
α from an experiment is a very instructive aim itself. For α = 0, one actually ˇnds

1 < C2(Q) < ξ(N)(1 + γ e−Q2R2
),

which is nothing but the Goldhaber parameterization [17, 18] with 0 < γ < 1 being a free
parameter adjusting the observed value of C2(Q = 0).

Within our aim to explore the correlation between Z0Z0, the scale Lst has the form

Lst 	

⎡
⎢⎢⎢⎢⎣

e
√

m2+μ2/T

12 α(N)k2
l (m2 + μ2)3/4

(
T

2 π

)3/2
(

1 +
15
8

T√
m2 + μ2

)
|1 − δk|2

⎤
⎥⎥⎥⎥⎦

1/5

, (46)
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where the condition l β
√

m2 + μ2 > 1 for any integer l in (45) was taken into account. The
only lower temperatures will drive Lst within formula (46) even if μ = 0 and l = 1 with the
condition T < m.

Note that the condition μ < m is a general restriction in the relativistic ®Bose-like gas¯,
and μ = m corresponds to the BoseÄEinstein condensation.

For high enough T no μ-dependence is found for Lst:

Lst 	
[

π2

12 ζ(3)α(N)k2
l T 3|1 − δk|2

]1/5

, (47)

where the condition T > l
√

m2 + μ2, l = 1, 2, . . . is taken into account. The origin of
formula (47) comes from

n̄(m, β) → n̄(β) 	 3 T 3

π2
ζ(3), (48)

where neither a Z0-boson mass nor the μ-dependence occurred; ζ(3) =
∞∑

l=1

l−3 = 1.202 is

the zeta function with the argument 3.
To be close to the experiment it is necessary to include transverse momenta, where the

Z0-boson mass m in Eqs. (45)Ä(47) is replaced by the transverse mass mT =
√

m2 + p2
T .

Actually, the increasing of T leads to squeezing of the domain of stochastic force in
uence,
and Lst(T = T0) = R at some effective temperature T0. The higher temperatures, T > T0,
satisfy more squeezing effect and at the critical temperature Tc the scale Lst(T = Tc) takes
its minimal value. Obviously Tc ∼ O(200 GeV) deˇnes the phase transition where the chiral
symmetry restoration will occur. Since in this phase all the masses tend to zero and α → 0
at T > Tc, one should expect the sharp expansion of the region with Lst(T > Tc) → ∞.

The qualitative relation between R and Lst mentioned above is the only one we can
emphasize in order to explain the mass dependence of the source size.

CONCLUSIONS

To summarize, the theoretical proposal for two-particle BoseÄEinstein correlation function
in case of Z0Z0 pairs in pp collisions is made for the ˇrst time.

The correlations of two bosons in 4-momentum space presented in this paper offer useful
and instructive complimentary viewpoints of theoretical and experimental works in multipar-
ticle femtoscopy and interferometry measurements at hadron colliders.

We ˇnd the time dependence of correlation function calculated in time-dependent external
ˇeld provided by the operator r(p, t) and the chaotic coherence function α(m, β). The result
can be compared with the static correlation functions (see, e.g., [21] and the references therein
mainly devoted to heavy-ion collisions) and can also be used for experimental data ˇtting.

The stochastic scale Lst decreases with increasing temperatures slowly at low temperatures,
and it decreases rather abruptly when the critical temperature is approached.

Our results ˇrst predicted for correlation radius R are both Z0-boson mass and lepton
energy dependent

R ∼ em/5T0

α1/5 |kl|2/5 m3/10 T
3/10
0

(49)
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for low values of T0 < m, while for higher temperatures, T0 >
√

m2 + μ2, one has

R ∼ 1

α1/5 |kl|2/5
T

3/5
0

. (50)

The theoretical correlation radius R at temperature T0 decreases as Z0-boson momentum
increases. Both estimations (49) and (50) serve as the ˇrst approximation to explain the
experimental data at different

√
s and hence at T . We claim that the experimental measuring

of R (in fm) can provide the precise estimation of the effective temperature T0 which is the
main thermal character in the Z0Z0-pair emitter source (given by the effective dimension R)
in the proper leptonic decaying channel Z0Z0 → ll̄ll̄ with the ˇnal lepton energy

√
k2

l + m2
l

at given α ˇxed by C2(Q = 0) and 〈N〉. Actually, T0 is the true temperature in the region of
multiparticle production with dimension R = Lst, because at this temperature it is exactly the
creation of two particles (Z0Z0) that occurred, and these particles obey the criterion of BEC.
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