УДК 539.163:546.94

ВОЗМОЖНОЕ СУЩЕСТВОВАНИЕ Hs В ПРИРОДЕ С ГЕОХИМИЧЕСКОЙ ТОЧКИ ЗРЕНИЯ

А. В. Иванов¹

Институт земной коры, Сибирское отделение РАН, Иркутск, Россия

С геохимической точки зрения рассмотрена гипотеза возможности существования долгоживущего изотопа ²⁷¹Нs в природных молибденитах и осмиридах. Показано, что наличие Hs в этих минералах можно объяснить, только сделав *ad hoc* допущение о существовании изобарной пары ²⁷¹Bh–²⁷¹Hs. Проверить это допущение можно посредством масс-спектрометрических измерений изотопных сдвигов U, Pb, Kr, Xe и Zr.

A hypothesis of existence in natural molybdenites and osmirides of a long-lived isotope 271 Hs is considered from a geochemical point of view. It is shown that presence of Hs in these minerals can be explained only by making an additional *ad hoc* assumption on existence of isobaric pair of 271 Bh $^{-271}$ Hs. This assumption could be tested by mass-spectrometric measurements of U, Pb, Kr, Xe and Zr isotopic shifts.

Extraordinary claims require extraordinary evidence. Carl Sagan

введение

В недавнем выпуске журнала «Ядерная физика» А. Маринов и др. [1] привели расчетные периоды полураспада гипотетического изотопа ²⁷¹Hs от $1,3 \cdot 10^8$ до $1,8 \cdot 10^{11}$ лет в зависимости от различных принимаемых параметров деформации ядра. Цель этих расчетов заключалась в согласовании теоретических данных с указаниями на экспериментально обнаруженную α -активность с энергией $\sim 4,4$ МэВ в некоторых природных объектах [2–4]. В данном сообщении с геохимической точки зрения рассматривается возможность нахождения Hs в молибдените и осмириде, в которых была обнаружена эта избыточная α -активность [2, 4]. Обсуждение проблемы существования долгоживущих сверхтяжелых элементов с точки зрения теоретической и экспериментальной физики проводится в работах [5–9] и др.

1. ИСТОРИЯ ВОПРОСА

В начале 60-х гг. прошлого столетия В. В. Чердынцев и др. [10, 11] α -спектрометрическим методом обнаружили избыток ²³⁵U в магнетите и молибдените, требующий присутствия в природе трансуранового радиоактивного элемента. Последующие работы были

¹E-mail: aivanov@crust.irk.ru

направлены на идентификацию этого трансуранового элемента α -спектрометрическим методом. В работах [2-4] в препаратах природных объектов различного возраста и генезиса (ископаемые костные останки, минералы магматических пород, железный метеорит и др.) обнаружена неидентифицированная α -активность в интервале энергий 4,2-4,6 МэВ, а также определено наличие энергетического спектра, отождествляемого с ²³⁹Ри. Кроме того, в ряде препаратов фиксировались энергетические спектры ²⁴³Ат. В работах [2–3] сделано предположение, что α -активность в интервале энергий 4,2–4,6 МэВ связана с ²⁴⁷Cm, который, посредством двух β^- - и двух α -распадов превращается в ²³⁹Pu, а сам является продуктом распада радиоактивного изотопа еще более тяжелого трансуранового элемента. По химическим свойствам этот трансурановый элемент походил на осмий [3]. В работе [4] проанализированы различные фракции осмиридия после химической пробоподготовки и также выявлена α -активность с энергией ~ 4.4 МэВ. Для объяснения наблюдаемого феномена высказано предположение о возможном существовании долгоживущего сверхтяжелого элемента с химическими свойствами осмия, известного в настоящее время под названием хассий (Hs, элемент 108). Предполагалась следующая цепь радиоактивных превращений между гипотетическим долгоживущим изотопом ²⁷¹Нs и ²⁴⁷Сm:

$${}^{271}\text{Hs} \xrightarrow{\alpha} {}^{267}\text{Sg} \xrightarrow{\alpha} {}^{263}\text{Rf} \xrightarrow{\alpha} {}^{259}\text{No} \xrightarrow{\alpha} {}^{255}\text{Fm} \xrightarrow{\alpha} {}^{251}\text{Cf} \xrightarrow{\alpha} {}^{247}\text{Cm}.$$
(1)

²⁴⁷Ст посредством последовательных α - и β -распадов превращается в стабильный изотоп ²⁰⁷Pb с промежуточным долгоживущим изотопом ²³⁵U ($T_{1/2} = (703.8 \pm 0.5) \times 10^6$ лет [12]):

$${}^{247}\text{Cm} \xrightarrow{\alpha} {}^{243}\text{Pu} \xrightarrow{\beta^-} {}^{243}\text{Am} \xrightarrow{\alpha} {}^{239}\text{Np} \xrightarrow{\beta^-} {}^{239}\text{Pu} \xrightarrow{\alpha} {}^{235}\text{U} \xrightarrow{7\alpha+7\beta^-} {}^{207}\text{Pb}.$$
(2)

Исходя из оцененной распространенности эмиттера α -частиц с энергией $\sim 4,4$ МэВ в работе [2] вычислен период полураспада ²⁴⁷Ст как $(2,5\pm0,5)\cdot10^8$ лет, что на порядок больше экспериментально установленного значения $(1,56\pm0,05)\cdot10^7$ лет [12]. Позднее период полураспада $(2,5\pm0,5)\cdot10^8$ лет был приписан ²⁷¹Hs [1].

Несмотря на важность результатов [2–4, 10, 11] и вытекающих из этих результатов следствий, они не проверялись в дальнейшем. В то же время указания на обнаружение α -активности с энергией ~ 4,4 МэВ в торите из гранита Конвей (Англия) [13] не были подтверждены более поздними исследованиями тех же самых образцов [14, 15].

2. ВОЗМОЖНОСТЬ ПРИСУТСТВИЯ Нѕ В МОЛИБДЕНИТЕ И ОСМИРИДЕ

Известно, что Hs является гомологом Os [16]. Это позволяет рассмотреть возможность присутствия Hs в природных образцах по аналогии с распространенностью в них Os. Рассмотрим молибденит и осмирид — минералы, которые исследовались α -спектрометрическим методом в работах [2, 4]. Геологическое описание мест отбора проб изученных минералов крайне ограничено. Однако эти минералы являются типоморфными для магматических пород, что позволяет распространить известные геохимические характеристики этих минералов на изученные пробы.

44 Иванов А. В.

Молибденит (MoS_2) кристаллизуется в подчиненном количестве в некоторых типах кислых (гранитных) магм. Иногда он образует скопления в гранитах, но чаще встречается в зонах гидротермальной проработки. В целом, молибденит можно рассматривать как минерал, образование которого исключительно связано с процессами, происходящими в земной коре. Молибденит повсеместно используется для Re-Os-датирования, поэтому распределение Re и Os в нем хорошо изучено [17-21 и ссылки в этих работах]. Сразу обращает на себя внимание, что этот минерал изначально не содержит осмия. Весь осмий в нем представлен изотопом ¹⁸⁷Os, который накапливается в ходе геологического времени в результате β^- -распада ¹⁸⁷Re. Исходя из этого представляется маловероятным, чтобы молибденит мог захватывать сколько-нибудь значимое количество Hs, если этот элемент присутствует в природе. Таким образом, либо следует поставить под сомнение результаты работ [2-4, 10, 11], либо требуется предположить, что изотоп ²⁷¹Hs является продуктом распада изотопа какого-то другого сверхтяжелого элемента. Таким изотопом мог бы быть гипотетический долгоживущий β^- -активный изотоп ²⁷¹Bh (борий, элемент 107). Учитывая, что Вh является гомологом Re [22], а Re обычно содержится в молибденитах в большом количестве (десятые доли процента), можно ожидать, что Вh, если он существует в природе, при образовании молибденита будет захватываться кристаллической решеткой этого минерала.

Иными словами, наличие в молибденитах Hs требует предположения о существовании достаточно долгоживущего β^- -активного ²⁷¹Bh или гомолога молибдена — ²⁷¹Sg (сиборгий, элемент 106), который посредством двух β^- -распадов превращается в ²⁷¹Hs. Если это допущение верно, тогда присутствие ²⁷¹Hs в молибдените находит логичное объяснение с точки зрения геохимических свойств этого минерала.

Осмирид — природный сплав осмия и иридия с примесями других платиноидов, характерный для пород ультраосновного состава (перидотитов). Он связан с процессами, происходящими в мантии Земли [23–25 и ссылки в этих работах]. Учитывая, что Оs в этом минерале является основным элементом, следует ожидать, что Hs, если он существует в мантии Земли, должен присутствовать в этом минерале в значимом количестве наряду с Os.

Допустим, что оценка периода полураспада ²⁷¹Hs $(2,5 \pm 0,5) \cdot 10^8$ лет верна [2]. Тогда практически весь ²⁷¹Hs, попавший на Землю во время ее формирования ~ 4,5 млрд лет назад, должен был бы распасться. Сверхтяжелые элементы образуются при взрывах сверхновых и, возможно, присутствуют в космических лучах высоких энергий [26]. Это позволяет предположить существование непрерывного притока на Землю сверхтяжелых элементов вместе с космической пылью, усиливающегося при прохождении солнечной системы через спиральные рукава нашей галактики. Косвенным образом на это может указывать обнаружение ²³⁹Pu в железомарганцевых конкрециях дна Тихого океана и Финского залива [3]. В мантию Земли сверхтяжелые элементы могли бы попадать посредством субдуцирования океанических осадков (погружения океанической плиты в мантию Земли в нисходящей ветви мантийной конвекции). Этот процесс попадания океанических осадков в мантию надежно задокументирован посредством геолого-геофизических и геохимических исследований [27–29 и ссылки в этих работах].

Рассмотрим еще одну возможность попадания Hs в мантию Земли. Для этого допустим, что 271 Hs является продуктом β^- -распада 271 Bh. Согласно современным геохимическим представлениям Re преимущественно концентрируется в металлическом ядре Земли [30, 31]. Исходя из этого, можно предположить, что ядро обогащено 271 Bh и

продуктом его распада ²⁷¹Hs. Одни авторы считают, что вещество ядра, обогащенное радиогенным изотопом ¹⁸⁷Os (и соответственно ²⁷¹Hs согласно нашему допущению), может переноситься к поверхности Земли восходящими конвективными потоками (плюмами) [32]. В частности, такая интерпретация предложена для некоторых осмиридов [33]. Другие авторы отвергают принципиальную возможность обмена веществом между ядром и верхней мантией [34, 35] или допускают только ограниченный обмен вещества [36]. Обогащение вулканических пород и осмиридов радиогенным ¹⁸⁷Os можно также объяснить сугубо за счет процессов, протекающих в верхней мантии [37] (см. обзор по проблеме [38]).

3. ДИСКУССИЯ

Из предыдущего раздела видно, что гипотеза присутствия Hs в природных минералах молибдените и осмириде не может быть принята без ряда дополнительных *ad hoc* допущений. Кроме того, предполагавшаяся в [4] цепь распадов (уравнение (1)), возможно, не существует в природе вообще, так как согласно новым данным ²⁶³Rf распадается путем спонтанного деления, а не α -распада [12, 39]. Однако, принимая допущение о сосуществовании долгоживущих изотопов Hs и Bh в молибдените, можно предположить следующую цепочку радиоактивных превращений:

$${}^{271}\text{Bh} \xrightarrow{\alpha} {}^{267}\text{Db} \xrightarrow{\alpha} {}^{263}\text{Lr} \xrightarrow{\alpha} {}^{259}\text{Md} \xrightarrow{\alpha(3\%)} \xrightarrow{2^{55}\text{Es}} \xrightarrow{\underline{\beta^-(92\%)}} {}^{255}\text{Fm} \xrightarrow{\alpha} {}^{251}\text{Cf} \xrightarrow{\alpha} {}^{247}\text{Cm}.$$

$$\xrightarrow{2^{55}\text{Es}} \xrightarrow{\alpha(8\%)} {}^{251}\text{Bk} \xrightarrow{\underline{\beta^-}} (3)$$

При этом основная часть продуктов деления будет представлена осколками спонтанного деления:

$${}^{271}\text{Bh} \xrightarrow{\alpha} {}^{267}\text{Db} \xrightarrow{\alpha} {}^{263}\text{Lr} \xrightarrow{\alpha} {}^{259}\text{Md} \xrightarrow{sf(97\%)}, \tag{4}$$

$$^{271}Bh \xrightarrow{\beta^{-}} ^{271}Hs \xrightarrow{\alpha} ^{267}Sg \xrightarrow{\alpha} ^{263}Rf \xrightarrow{sf(\sim 100\%)} .$$
(5)

Изотопы 271 Bh, 271 Hs, 267 Sg, 267 Db и 263 Lr пока что не были получены экспериментально и поэтому цепочки распада (3), (4) и (5) весьма гипотетичны.

Таким образом, идея о присутствии долгоживущих изотопов Hs в некоторых природных объектах [2–4] в результате обнаружения избыточной активности ²³⁵U, ²³⁹Pu и не идентифицированной α -активности с энергией ~ 4,4 МэВ в различных природных объектах, не может быть принята без дополнительных допущений. Учитывая, что данные работ [2–4, 10, 11] не подвергались экспериментальной проверке, существует насущная необходимость такой проверки. В природных образцах, обогащенных гипотетическим изотопом ²⁷¹Hs, следует ожидать аномального обогащения изотопом ²³⁵U, а в древних образцах (сотни миллионов – миллиарды лет) — еще и обогащения изотопом ²⁰⁷Pb. Кроме того, должны наблюдаться изотопные сдвиги Kr, Xe, Zr и других элементов, образующихся при спонтанном делении. До подтверждения этих эффектов прямыми масс-спектрометрическими методами попытка интерпретации данных работ [2–4, 10, 11] в контексте существования сверхтяжелых элементов в природе, по-видимому, не является целесообразной. 46 Иванов А. В.

выводы

Рассмотрена обсуждавшаяся в литературе [1–4, 10, 11] гипотеза присутствия в природных объектах долгоживущего изотопа Hs, основанная на экспериментальных данных α -спектрометрии. Исходя из геохимических свойств Os (гомолога Hs) и Re (гомолога Bh) сделан вывод, что для объяснения этих экспериментальных данных требуется допущение о существовании изобарной пары ²⁷¹Bh–²⁷¹Hs. Данное допущение требует проверки посредством измерения изотопных сдвигов U, Pb, Kr, Xe и Zr в природных объектах (например, молибденитах) посредством прямых масс-спектрометрических измерений.

Работа выполнена в рамках гранта РФФИ 05-05-64281. Автор благодарит А.А.Балдина за поддержку и В.В.Кобычева за полезные замечания.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Marinov A. et al.* New outlook on the possible existence of superheavy elements in nature // Phys. At. Nucl. 2003. V. 66. P. 1137–1145.
- 2. Чердынцев В.В., Михайлов В.Ф. Первозданный заурановый изотоп в природе // Геохимия. 1963. № 1. С. 3–15.
- 3. Чердынцев В. В. и др. Плутоний-239 в природе // Геохимия. 1968. № 4. С. 395-401.
- Meier H. et al. Über die Existenz einer unbekannten natürlichen α-Aktivität im 4.3–4.6 MeV-Bereich // Z. Naturforsch. 1970. Bd. 25. S. 79–87.
- 5. Оганесян Ю. Ц. Могут ли существовать в природе сверхтяжелые элементы? // Краткие сообщ. ОИЯИ. 1996. № 6. С. 49–58.
- 6. Oganessian Yu. Synthesis and decay properties of superheavy atoms in nuclear reactions induced by stable and radioactive ion beams // Eur. Phys. J. A. 2002. V. 13. P. 135–141.
- 7. Собичевски А. Современное представление о стабильности тяжелых и сверхтяжелых ядер // УФН. 1996. Т. 166. С. 943–948.
- Hofmann S. Techniques for the discovery of new elements // Nucl. Instr. Meth. B. 1997. V. 126. P. 310–315.
- Royer G. Alpha emission and spontaneous fission through quasi-molecular shapes // J. Phys. G: Nucl. Part. Phys. 2000. V. 26. P. 1149–1170.
- 10. *Чердынцев В.В. и др.* Избыток ²³⁵U в магнетите с повышенным содержанием актиния // Геохимия. 1960. № 4. С. 373–374.
- 11. *Чердынцев В. В. и др.* Изотопы урана в природных условиях. П. Изотопный состав минералов // Геохимия. 1961. № 10. С. 840–848.
- 12. Голашвили Т.В. и др. Справочник нуклидов-2: М.: ЦНИИатоминформ, 2002. 348 с.
- 13. Cherry R. D., Richardson K. A., Adams J. A. S. Unidentified excess alpha-activity in the 4.4-MeV region in natural thorium samples // Nature. 1964. V. 202. P. 639–641.

- Петржак К.А., Якунин М.И., Тер-Акопян Г.М. К вопросу о неидентифицированной α-активности торита // АЭ. 1972. Т. 32. С. 179–181.
- Gentry R. V. et al. Reinvestigation of the α-Activity of Conway Granite // Nature. 1978. V. 273. P. 217–218.
- Düllmann Ch. E. et al. Chemical investigation of hassium (element-108) // Nature. 2002. V.418. P.859–862.
- 17. Иванов А. В., Палесский С. В. Анализ изотопных отношений осмия методом ICP-MS при химическом травлении молибденита: приложение к Re–Os-датированию с предварительной нейтронной активацией // Геохимия. 2003. № 10. С. 1121–1126.
- Raith J. G., Stein H. J. Re–Os dating and sulfur isotope composition of molybdenite from tungsten deposits in western Namaqualand, South Africa: implications for ore genesis and the timing of metamorphism // Mineral. Deposita. 2000. V. 35. P. 741–753.
- 19. Selby D. et al. Re–Os and U–Pb geochronology of the Clear Creek, Dublin Gulch, and Mactung deposits, Tombstone Gold Belt, Yukon, Canada: absolute timing relationships between plutonism and mineralization // Can. J. Earth. Sci. 2003. V. 40. P. 1839–1852.
- Stein H. J. et al. The remarkable Re–Os chronometer in molybdenite: How and why it works? // Terra Nova. 2001. V. 13. P. 479–486.
- Stein H.J. et al. Re–Os ages for Archean molybdenite and pyrite, Kuittila-Kivisio, Finland and Proterozoic molybdenite, Kibeliali, Lithuania: testing the chronometer in a metamorphic and metasomatic setting // Mineral. Deposita. 1998. V. 33. P. 329–345.
- 22. Eichler R. et al. Chemical characterization of bohrium (element 107) // Nature. 2000. V.407. P.63–65.
- Meibom A., Frei R. Evidence for an ancient osmium isotopic reservoir in Earth // Science. 2002. V. 296. P. 516–518.
- 24. *Meibom A., Frei R., Sleep N.H.* Osmium isotopic compositions of Os-rich platinum group element alloys from the Klamath and Siskiyou Mountains // J. Geophys. Res. B. 2004. V. 109. Art. No. B02203.
- 25. *Meibom A. et al.* Re–Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth's upper mantle // Nature. 2002. V. 419. P. 705–708.
- 26. Perelygin V. P. et al. On search and identification of tracks due to short-lived SHE nuclei in extraterrestrial crystals // Rad. Meas. 2003. V. 36. P. 271–279.
- Morris J., Valentine R., Harrison T. Be-10 imaging of sediment accretion and subduction along the northeast Japan and Costa Rica convergent margins // Geology. 2002. V. 30. P. 59–62.
- Davidson J. P. Lesser Antilles isotopic evidence of the role of subducted sediment in island-arc magma genesis // Nature. 1983. V. 306. P. 253–256.
- 29. White W. M., Dupre B. Sediment subduction and magma genesis in the Lesser Antilles isotopic and trace-element constraints // J. Geophys. Res. B. 1986. V. 91. P. 5927–5941.
- Walker R. J., Morgan J. W., Horan M. F. Os-187 enrichment in some plumes evidence for core-mantle interaction // Science. 1995. V. 269. P. 819–822.

48 Иванов А. В.

- Walker R. J. et al. Applications of the Pt-190–Os-186 isotope system to geochemistry and cosmochemistry // Geochim. Cosmochim. Acta. 1997. V. 61. P. 4799–4807.
- 32. Brandon A. D. et al. Os-186–Os-187 systematics of Hawaiian picrites // Earth Planet. Sci. Lett. 1999. V. 174. P. 25–42.
- 33. *Bird J. M. et al.* Osmium and lead isotopes of rare OsIrRu minerals: derivation from the core-mantle boundary region? // Ibid. V. 170. P. 83–92.
- 34. Anderson D. L. Top-down tectonics // Science. 2001. V. 293. P. 216-218.
- 35. Foulger G. R., Natland J. H. Is «hotspot» volcanism a consequence of plate tectonics // Science. 2003. V. 300. P. 921–922.
- 36. Балышев С.В., Иванов А.В. Низкоплотностные аномалии в мантии: всплывающие плюмы и/или разогретые погребенные литосферные плиты? // Докл. РАН. 2001. Т. 380. С. 523–527.
- 37. Smith A. D. Critical evaluation of Re–Os and Pt–Os isotopic evidence on the origin of intraplate volcanism // J. Geodynamics. 2003. V. 36. P. 469–484.
- Ivanov A. V., Balyshev S. O. Mass flux across the lower-upper mantle boundary: vigorous, absent or limited? // Foulger G. R. et al. Plates, Plumes & Paradigms. Geological Society of America. Princeton, 2005. Special Paper 388. P. 327–346.
- Kratz J. V. et al. An EC-branch in the decay of 27-s ²⁶³Db: Evidence for the isotope ²⁶³Rf // Radiochimica Acta. 2003. V.91. P. 59–62.

Получено 24 января 2005 г.