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We study the in	uence of nonlocality in the interaction on two spin-one pairing patterns of two-
	avor quark matter: the anisotropic blue color pairing besides the usual two-color superconducting
matter (2SCb), in which red and green colors are paired, and the color-spin locking phase (CSL). The
effect of nonlocality on the gaps is rather large and the pairings exhibit a strong dependence on the form
factor of the interaction, especially in the low density region. The application of these small spin-one
condensates for compact stars is analyzed: the early onset of quark matter in the nonlocal models may
help to stabilize hybrid star conˇgurations. While the anisotropic blue quark pairing does not survive a
big asymmetry in 	avor space as imposed by the charge neutrality condition, the CSL phase as a 	avor
independent pairing can be realized as neutral matter in compact star cores. However, smooth form
factors and the mismatch between the 	avor chemical potential in neutral matter make the effective gaps
of the order of magnitude � 10 keV, and a more systematic analysis is needed to decide whether such
small gaps could be consistent with the cooling phenomenology.
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INTRODUCTION

The investigation of color superconducting phases in cold dense quark matter has attracted
much interest in the last years since those phases could be relevant for the physics of compact
star cores [1]. Nevertheless, it became clear that large spin-0 condensates, like the usual two-
	avor superconductor (2SC), although having large pairing gaps (∼ 100 MeV), and therefore
a direct in	uence on the equation of state (EoS), may be disfavored by the charge neutrality
condition if not unusually strong diquark coupling constants are considered [2Ä4].

Alternatively, spin-1 condensates are being investigated [5Ä7]. Due to their smallness,
their in	uence on the EoS is negligible but they could strongly affect the transport properties
in quark matter, and therefore have important consequences on observable phenomena like
compact star cooling, see [8]. A recent investigation of neutrino emission and cooling rates
of spin-1 color superconductors constructed for conserved total angular momentum allows for
color-spin locking, planar, polar, and A phases [9]. However, none of these phases fulˇlls
the requirements of cooling phenomenology that no ungapped quark mode should occur on
which the direct Urca process could operate and lead to very fast cooling in disagreement
with modern observational data [12].

In the present work, we consider spin-1 pairing patterns different from the above-
mentioned, like the anisotropic third color (say, blue) quark pairing besides the usual 2SC
phase (2SCb) [10] and the s-wave color-spin locking phase (CSL) [11], which have been
introduced within the NJL model whereby small gaps in the region of some fractions of
MeV have been obtained. Such small gaps could help to suppress efˇciently the direct
Urca process in quark matter, and thus to control the otherwise too rapid cooling of hybrid
stars [12, 13].

One important feature is that the form of the regularization, i.e., via a sharp cutoff or a
form factor function, is expected to have a strong impact on the resulting gaps due to the
sensitive momentum dependence of the integrand in the gap equation [10]. Especially the
behavior of quark matter in the density region of the suspected deconˇnement transition plays
a crucial role for determining the stability of compact star conˇgurations. Models with a late
onset of quark matter could eventually lead to unstable hybrid star conˇgurations.

For example, in [11] it has been shown within the local NJL model how a possible
pairing pattern for compact star matter which fulˇlls the constraints from compact star cooling
phenomenology could be described. These require that all quark species should be paired and
the smallest pairing gap should be of the order of 10 keV to 1 MeV with a decreasing density
dependence. A caveat of the NJL model quark matter is, however, that a stable hybrid star
can be realized only marginally, see [14].

The advantage of nonlocal models is that they can describe the regularization of the quark
interaction via form factor functions, and therefore represent it in a smoother way, especially
for low densities [15]. For the case of the 2SC phase it has already been shown that the
effect of nonlocality in the low density region is rather large and the pairing exhibits a strong
dependence on the form factor of the interaction [2, 16]. Moreover, the early onset of quark
matter for the dynamical chiral quark model, in contrast to the NJL model, might help to
stabilize hybrid star conˇgurations.

As it has been shown in [17] within a nonlocal generalization of the NJL model [15],
stable hybrid stars with large quark matter cores can be obtained. In order to describe the
properties of these stars consistently, including their cooling phenomenology, the description
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of diquark pairing gaps as well as emissivities and transport properties for the above-motivated
CSL phase should be also given within a nonlocal quark model.

As the ˇrst step in this direction we will provide in the present paper the spin-1 pairing
gaps for a nonlocal, instantaneous chiral quark model under neutron star constraints for later
application in the cooling phenomenology. We give here the ˇrst discussion of the in	uence
of nonlocality of the interaction in momentum space when compared to the NJL model case
and discuss the possible role of spin-1 condensates for compact star applications.

The paper is organized as follows: in Sec. 1 we brie	y review how the NJL model
is modiˇed when nonlocality is introduced using a three-dimensional nonlocal chiral quark
model; in Secs. 2 and 3 we present the nonlocal version of the anisotropic blue color paring
(2SCb) besides the usual two-	avor color superconducting (2SC) phase and of the color-spin
locking phase (CSL), respectively. In Sec. 4 we present preliminary results for neutral matter
in compact stars for the Gaussian form factor and discuss whether requirements for hybrid
star cooling phenomenology could be met. Finally, we draw the Conclusions.

1. NONLOCAL CHIRAL QUARK MODEL

We investigate a nonlocal chiral model for two-	avor quark matter in which the quark
interaction is represented in a separable way by introducing form factor functions g(p) in the
bilinears of the currentÄcurrent interaction terms in the Lagrangian [2, 15Ä17]. It is assumed
that this four-fermion interaction is instantaneous, and therefore the form factors depend only
on the modulus of the three momentum p = |p|.

In the mean ˇeld approximation the thermodynamical potential can be evaluated and is
given by

Ω(T, μ) = −T
∑

n

∫
d3p

(2π)3
1
2
Tr ln

(
1
T

S−1(iωn,p)
)

+ V, (1)

where the sum is over fermionic Matsubara frequencies ωn = (2n + 1)πT and V is the
quadratic contribution of the condensates considered. The speciˇc form of V in dependence
on the order parameters φ for chiral symmetry breaking and Δ for color superconductivity in
the corresponding diquark pairing channels will be given below in Sec. 2.

In our nonlocal extension the inverse of the fermion propagator in NambuÄGorkov space is
modiˇed in comparison to the NJL-model case by momentum-dependent form factor functions
g(p) as follows:

S−1(p) =

(
�p + μ̂γ0 − M̂(p) g(p)Δ̂

−g(p)Δ̂
† �p − μ̂γ0 − M̂(p)

)
, (2)

where μ̂ is the chemical potential matrix and the elements of M̂(p) = diag {Mf(p)} are the
dynamical masses of the quarks given by

Mf (p) = mf + g(p)φf . (3)

The matrix Δ̂ represents the order parameters for diquark pairing which will be made explicit
in Secs. 2 and 3, respectively.
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In (2) and (3) we have introduced the same form factors g(p) to represent the nonlocality
of the interaction in the meson (qq̄) and diquark (qq) channels. In our calculations we use the
Gaussian (G), Lorentzian (L) and cutoff (NJL) form factors deˇned as

gG(p) = exp (−p2/Λ2
G), (4)

gL(p) = [1 + (p2/Λ2
L)2]−1, (5)

gNJL(p) = θ(1 − p/ΛNJL). (6)

The parameters for the above form factor models used in this work are presented in the table.
They have been ˇxed by the pion mass, the pion decay constant and the constituent quark
mass M = M(0) at T = μ = 0. In order to estimate the effect of the nonlocality on the
results relative to the NJL model, we used gG, gL and gNJL with parameters ˇxed such that
M = 380 MeV (see table). For details of the parameterization, see [22].

Parameter sets for the nonlocal chiral quark model (gG, gL) and for the NJL model (gNJL); for all
M(0) = 380 MeV is ˇxed

Form factor Notation Λ, MeV GΛ2 m, MeV

Gaussian gG 786.7 4.12 2.50

Lorentzian gL 637.2 2.76 2.59
NJL gNJL 596.1 2.36 5.54

The stationary points of the thermodynamical potential (1) are found from the condition
of a vanishing variation

δΩ = 0 (7)

with respect to variations of the order parameters. Equation (7) deˇnes a set of gap equations.
Among the solutions of these equations the thermodynamically stable state corresponds to the
set of order parameter values for which Ω has an absolute minimum.

2. ANISOTROPIC BLUE QUARK PAIRING FOR NONLOCAL MODEL

First, we consider the 2SCb phase in which two of three colors (e.g., red r and green g)
pair in the standard spin-0 isospin singlet condensate (2SC phase) and the residual third color
(consequently, it is blue b) pairs in a spin-1 condensate (symmetric in Dirac space, symmetric
in color, antisymmetric in 	avor) [10]. The matrix Δ̂ in the inverse quark propagator (2) for
the 2SCb phase is then given by

Δ̂2SCb = Δ(γ5τ2λ2)(δc,r + δc,g) + Δ′
(
σ03 τ2 P̂

(c)
3

)
δc,b, (8)

where τ2 is an antisymmetric Pauli matrix in the 	avor space and λ2 is an antisymmetric

Gell-Mann matrix in the color space; σ03 =
i

2
[γ0, γ3] and P̂

(3)
3 =

1
3
− λ8√

3
is the projector
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on the third color. If Δ′ �= 0, this can be understood as a nonzero third component of a
vector in color space which breaks the O(3) rotational symmetry spontaneously. The blue
quark pairing is therefore anisotropic. We consider ˇrst symmetric matter, and thus we take
the quark chemical potentials as μu = μd = μ.

The thermodynamical potential is given by

Ω2SCb(T, μ) =
φ2

4G1
+

|Δ|2
4G2

+
|Δ′|2
16G3

−

− 4
3∑

i=1

∫
d3p

(2π)3

[
E−

i + E+
i

2
+ T ln (1 + e−E−

i /T ) + T ln (1 + e−E+
i /T )

]
, (9)

where the coupling constants G1, G2, G3 follow the relation given by the instanton induced
interaction [18]

G1 : G2 : G3 = 1 : 3/4 : 3/16. (10)

The dispersion law for the paired quarks (r , g) is given by

E∓
1,2(p) = E∓(p) =

√
(ε ∓ μ)2 + g2(p)|Δ|2, (11)

where ε =
√

p 2 + M2 is the free particle dispersion relation and M = Mu = Md.
For the anisotropic pairing of the blue quarks the dispersion relation can be written as

E∓
3 (p) =

√
(εeff ∓ μeff)2 + g2(p)|Δ′

eff |2, (12)

where the effective variables depend on the angle θ, with cos θ = p3/|p|, and are deˇned as

ε2eff = p 2 + M2
eff , (13)

Meff = M
μ

μeff
, (14)

μ2
eff = μ2 + g2(p)|Δ′|2 sin2 θ, (15)

|Δ′
eff |2 = |Δ′|2

(
cos2 θ +

M2

μ2
eff

sin2 θ

)
. (16)

The dispersion relation E±
3 is, therefore, an anisotropic function of p, and therefore the

calculation of (9) should be performed as an integral over the modulus of |p| and over the
angle θ. The dispersion relation E±

3 has a minimum if θ = π/2 and vanishes if M = 0 or
Δ′ = 0.

As it has been pointed out in [10], the gap equations for Δ and Δ′ are only indirectly
coupled by their dependence on M . Therefore, since the equation for Δ′ nearly decouples if
M is small, we can illustrate the anisotropic contributions to the thermodynamical potential
Ω ˇxing the variables (μ, T ) and the order parameters (φ, Δ) and varying the angle θ. For
this purpose, we consider

dΩ2SCb = d(cos θ)Ω2SCb |cos θ, (17)

and in Fig. 1 we plot Ω2SCb |cos θ as a function of the gap Δ′. As θ increases from 0 to π/2
the position of the minimum of Ω2SCb |cos θ moves to the lower values of the gaps Δ′. The
value of Δ′ that minimizes the thermodynamical potential is found once the integration over
the angle θ is performed.
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Fig. 1. Anisotropic contributions Ω2SCb |cos θ to the thermodynamical potential Ω2SCb as a function

of the spin-1 gap Δ′ for ˇxed (μ = 500 MeV, T = 0) and (φ = 20 MeV, Δ = 106 MeV). As θ

increases the position of the minimum of Ω2SCb |cos θ moves to the lower values of the gaps Δ′. The
low gap region is zoomed in the inset ˇgure on the bottom left. For Ω2SCb (solid line) we obtain that

the minimum is placed at Δ′ � 2 MeV/fm3. The NJL parameterization is considered

2.1. Gap Equation Solutions. We search for the stationary points of Ω2SCb (7) with
respect to the order parameters solving the gap equations

δΩ2SCb

δφ
=

δΩ2SCb

δΔ
=

δΩ2SCb

δΔ′ = 0, (18)

using the dispersion relations (11) and (12). The results that are shown in this work are
obtained for T = 0.

In Fig. 2 we show the chiral gap φ, the 2SC diquark gap Δ and the spin-1 pairing gap of
the blue quarks Δ′ as functions of the quark chemical potential μ. The gaps Δ′ are strongly
density-dependent rising functions and typically of the order of magnitude of keV, e.g., for a
ˇxed μ at least two orders of magnitude are smaller than the corresponding 2SC gaps. These
small gaps are very sensitive to the form of the regularization and to the parameterization
used. Obviously, the onset and the slope of the superconducting phases also strongly depend
on the parameters used.

The effect of the nonlocality on the results is shown in Fig. 2, b: the smoothness of the
Gaussian form factor reduces the Δ′ gaps dramatically. For this case, the blue quark pairing
gaps are about two orders of magnitude lower than the corresponding NJL model (both with
ˇxed M = 380 MeV).
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Fig. 2. Chiral gap φ, 2SC diquark gap Δ (a) and spin-1 pairing gap of the blue quarks Δ′ (b) as a

function of the quark chemical potential μ for the NJL model and for the Gaussian form factor

The dependence of the results on the parameters used is also rather strong and nonlinear
as it is shown in Fig. 3 using, as example, the Gaussian form factor. When the coupling
constant G3 is doubled (dash-dotted line) the resulting gaps increase between two and three
orders of magnitude, depending on the chemical potential.

Fig. 3. Effect of the coupling constant G3 on the spin-1 blue quarks energy gaps Δ′ for the Gaussian
form factor. The dash-dotted line corresponds to the case when the coupling constant G3 is doubled

Since these small gaps are practically negligible in comparison to usual 2SC gaps, they
would have no in	uence on the equation of state. On the other hand, it is well known
that even small pairing energies could play an important role in the calculation of transport
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properties of quark matter for temperatures below the order of magnitude of the gap para-
meter. Nevertheless, it is unlikely that the blue quark pairing could survive the compact star
constraints: the charge neutrality requires that the Fermi seas of the up and down quarks
should differ by about 50Ä100 MeV and this is much larger than the gaps that we obtain for
these condensates (∼ keV) in the symmetric case.

In the following section we present the nonlocality effects on a 	avor symmetric spin-1
pairing channel being a good candidate to survive the large mismatch between up and down
quark Fermi seas in charge neutral quark matter.

3. COLOR-SPIN LOCKING (CSL) PHASE FOR A NONLOCAL CHIRAL MODEL

In the s-wave CSL phase introduced in Ref. [11], which differs from the CSL phase
in [7], each condensate is a component of the antisymmetric antitriplet in the color space
and is locked with a vector component in the spin space. In the present paper, we study a
nonlocal generalization of the CSL pairing pattern of Ref. [11] and consider the matrix Δ̂ in
(2) for the CSL channel as

Δ̂CSL = Δf (γ3λ2 + γ1λ7 + γ2λ5). (19)

The thermodynamical potential can be decomposed into single-	avor components

ΩCSL(T, {μf}) =
∑

f∈{u,d}
ΩCSL

f (T, μf), (20)

where the contribution of each 	avor is

ΩCSL
f (T, μf ) =

φ2
f

8G1
+ 3

|Δf |2
8Hv

−
6∑

k=1

∫
d3p

(2π)3
(Ef,k + 2T ln (1 + e−Ef,k/T )). (21)

The ratio of the two coupling constants

G1 : Hv = 1 :
3
8

(22)

is obtained via Fierz transformations of the color-currents for a one-gluon exchange interac-
tion. To derive the dispersion relations Ef,k we follow [11] and we extend the expressions
for the nonlocal model introducing the form factors to modify the quark interaction. We
obtain that Ef ;1,2 could be brought in the standard form

E2
f ;1,2 = (εf,eff ∓ μf,eff)2 + |Δf,eff |2g2(p) (23)

if the effective variables are now deˇned as

ε2
f,eff = p 2 + M2

f,eff , (24)

Mf,eff =
μf

μf,eff
Mf (p), (25)

μ2
f,eff = μ2

f + |Δf |2g2(p), (26)

Δf,eff =
Mf (p)
μf,eff

|Δf |. (27)
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For Ef ;k, k = 3, . . . , 6, the particle and the antiparticle branches split

E2
f ;3,5 = (εf − μf )2 + af ;3,5|Δf |2g2(p), (28)

E2
f ;4,6 = (εf + μf )2 + af ;4,6|Δf |2g2(p), (29)

where the momentum-dependent coefˇcients af ;k, k = 3, . . . , 6 are given by

af ;3,5 =
1
2

[
5 − p 2

εfμf
±

√(
1 − p 2

εfμf

)2

+ 8
M2

f (p)
ε2

f

]
, (30)

af ;4,6 =
1
2

[
5 +

p 2

εfμf
±

√(
1 +

p 2

εfμf

)2

+ 8
M2

f (p)
ε2

f

]
(31)

and

ε2
f = p 2 + M2

f (p). (32)

We solve the gap equations

δΩCSL
f

δφf
=

δΩCSL
f

δΔf
= 0 (33)

and present the results of the global minimum of ΩCSL
f in the next subsection.

3.1. Gap Equation Solutions for Each Flavor. The mass gaps and the CSL gaps are
shown in Fig. 4 for different form factors of the quark interaction.

The CSL gaps are strongly μf -dependent rising functions in the domain that is relevant to
compact star applications. There is a systematic reduction of the CSL gaps as the form factors
become smoother (from NJL to Gaussian) and the condensates in the nonlocal extension are
at least one order of magnitude smaller than in the NJL case.

Fig. 4. The dependence of the chiral gap φ (a) and the CSL pairing gap Δf (b) on the chemical

potential μf for different form factors of the nonlocal interaction and for the NJL model
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Note that especially the low-density region is qualitatively determined by the form of the
interaction. Since the nonlocality also affects the chiral gap, the breakdown of which is a
prerequisite for the occurrence of color superconducting phases, we observe for the nonlocal
models an earlier onset of the superconducting quark matter (μf,crit � 350 MeV) than in the
NJL model cases. As it has been pointed out in [17], the position of the onset is crucial to
stabilize hybrid star conˇgurations. In general, NJL models present a later onset than nonlocal
ones [16] and might disfavor the occurrence of stable hybrid star conˇgurations with a quark
matter core [19].

Fig. 5. The effective CSL pairing gap Δf,eff for different form factors as a function of the chemical
potential μf

In Fig. 5 we plot the effective CSL gaps setting the explicit dependence of the form factor
g(p) = 1 in (27) in order to compare the order of magnitude of them with sharp cutoff
models. We obtain that the Gaussian is an increasing function of the chemical potential from
approximately 15 to 35 keV and the Lorentzian is nearly constant of the order of 80Ä90 keV.
Both exhibit gaps that are much smaller than the corresponding NJL ones which are in the
range Δf,eff � 300−200 keV.

4. RESULTS FOR MATTER IN COMPACT STARS

Since the CSL pairing is symmetric in 	avor, we can easily construct electrically neutral
quark matter in β-equilibrium for compact star applications. We consider stellar matter in the
quark core of compact stars consisting of {u, d} quarks and leptons {e, νe, ν̄e, μ, νμ, ν̄μ}. The
particle densities nj are conjugate to the corresponding chemical potentials μj according to

nj = − ∂Ω
∂μj

∣∣∣∣
φ0,Δ0;T

, (34)

where the index j denotes the particle species. We consider matter in β-equilibrium with
only electrons and since we assume that neutrinos leave the star without being trapped
(μν̄e = −μνe = 0, μν̄μ = −μνμ = 0)

μe = μd − μu. (35)
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We are interested in neutral matter. Therefore, we impose that the total electric charge
should vanish

2
3
nu − 1

3
nd − ne = 0. (36)

The CSL condensates are color neutral such that no color chemical potentials are needed and
no further constraints need to be obeyed.

We calculate the CSL gaps for each 	avor as a function of the quark chemical potential
μ = (μu + 2μd)/3,

Δf = Δf (μf (μ)),
Δf,eff = Δf,eff(μf (μ)),

(37)

where the functional relation μf (μ) is taken from the β-equilibrated and neutral normal quark
matter equation of state.

The results for the CSL gaps and the effective gaps as a function of the chemical potential μ
are shown in Figs. 6 and 7, respectively. From the parameterizations we listed in the table,
we choose the Gaussian set because we consider it the most promising for stable hybrid star
conˇgurations due to the early onset of chiral and superconducting phase transitions in quark
matter.

Fig. 6. CSL gaps for β-equilibrated and neutral
quark matter as a function of the quark chemical

potential μ for the Gaussian set

Fig. 7. Effective CSL gaps for β-equilibrated and
neutral quark matter as a function of μ for the

Gaussian set

From Figs. 6 and 7, we see that the two branches of the gap functions corresponding to
the up and down quarks are put apart by the charge neutrality condition (thick lines). The
smallest gap Δu runs from ≈ 100 keV near the onset to ≈ 500 keV at μ = 500 MeV while
for the d quarks Δd increases from ≈ 380 keV to 1.4 MeV in the same range.

On the other hand, the effective gaps Δf,eff are of the order of magnitude of � 10 keV,
showing an approximate linear behaviour with μ. It remains to be investigated whether such
small effective gaps could effectively suppress the direct Urca process in quark matter which
is a requirement of compact star cooling phenomenology.

In this respect, we found here that two facts produce a strong reduction of the CSL
energy gaps. First, when we include smooth form factors in the effective interactions, the
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values of the gaps decrease dramatically relative to the NJL case (an order of magnitude from
� 100 keV for NJL to � 10 keV for Gaussian). Second, when neutrality constraints are
considered, Δu and the effective gaps Δf,eff are reduced further.

However, as we have shown, there is a strong dependence of our results on the parame-
terization, and a more systematic investigation on the smoothness of the form factor could be
helpful to decide whether these phases could be suitable for compact star applications. More-
over, this study should be seen as a preparatory step for subsequent investigations where, for
example, a covariant generalization of the formalism for the inclusion of nonlocality effects
[20, 21] should be considered.

CONCLUSION

We have studied the effect of nonlocality on spin-1 condensates in two-	avor quark matter:
the 2SC + spin-1 pairing of the blue quarks (2SCb) and the color-spin locking (CSL) phase.
We found that the size of these small gaps is very sensitive to the form of the regularization.
The nonlocality has a strong impact on the low density region and we obtain an earlier onset
for the superconducting phases. This might be crucial to stabilize quark matter cores in
hybrid stars.

On the other hand, due to the 	avor asymmetry, we ˇnd that the 2SCb pairing phase
can be ruled out for compact stars applications. The CSL phase is, in contrast, 	avor
independent, and therefore inert against the constraint of electric neutrality. For electrically
neutral quark matter in β-equilibrium we obtain effective CSL gaps which are of the order
of magnitude of 10 keV, which might help to suppress the direct Urca process, in accordance
with recent results from compact star cooling phenomenology. Nevertheless, since our results
are strongly-dependent on the parameters used and on the form of the regularization, more
systematic studies are needed in order to decide whether the CSL phase could be applied in
the description of compact stars.
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