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We describe a computational science research programme primarily aimed at engineering numerically
robust software that can exploit high performance on distributed computers in the study of electron
collisions with atoms and ions. In particular, we describe the development of 2DRMP-G, a Grid aware
two-dimensional R-matrix propagator, and its numerical validation using CADNA, a software tool based
on discrete stochastic arithmetic.

�¶¨¸ ´  ¶·μ£· ³³  ¢ÒÎ¨¸²¨É¥²Ó´ÒÌ ¨¸¸²¥¤μ¢ ´¨°, ¶¥·¢μ´ Î ²Ó´μ ¶·¥¤´ §´ Î¥´´ Ö ¤²Ö ¸μ§¤ -
´¨Ö Î¨¸²¥´´μ ´ ¤¥¦´μ£μ ¶·μ£· ³³´μ£μ μ¡¥¸¶¥Î¥´¨Ö, ±μÉμ·μ¥ ³μ¦¥É ¨¸¶μ²Ó§μ¢ ÉÓ ¢Ò¸μ±ÊÕ ¶·μ-
¨§¢μ¤¨É¥²Ó´μ¸ÉÓ · ¸¶·¥¤¥²¥´´ÒÌ ±μ³¶ÓÕÉ¥·μ¢ ¤²Ö ¨§ÊÎ¥´¨Ö ¸Éμ²±´μ¢¥´¨° Ô²¥±É·μ´μ¢ ¸  Éμ³ ³¨
¨ ¨μ´ ³¨. ‚ Î ¸É´μ¸É¨, μ¶¨¸ ´μ ¸μ§¤ ´¨¥ ¶·μ£· ³³Ò 2DRMP-G, Ö¢²ÖÕÐ¥°¸Ö £·¨¤-¶·¨²μ¦¥´¨¥³
¤²Ö ¢ÒÎ¨¸²¥´¨Ö ¤¢Ê³¥·´μ£μ R-³ É·¨Î´μ£μ ¶·μ¶ £ Éμ· , ¨ Î¨¸²¥´´ Ö ¶·μ¢¥·±  ¥¥ ¤μ¸Éμ¢¥·´μ¸É¨ ¸
¶μ³μÐÓÕ ¶·μ£· ³³Ò CANDA, ¶·μ£· ³³´ Ö ·¥ ²¨§ Í¨Ö ±μÉμ·μ° μ¸´μ¢ ´  ´  ¤¨¸±·¥É´μ° ¸ÉμÌ -
¸É¨Î¥¸±μ°  ·¨Ë³¥É¨±¥.

PACS: 02.60.-X; 02.90.+P

INTRODUCTION

For over four hundred years, from the Scientiˇc Revolution at the dawn of the 17th
century to the end of the Second World War, modern science progressed through a rich
interplay between theory and experiment.

This changed dramatically following the development of the digital computer in the 1940s.
Computational science was born and, after cutting its teeth on the ballistics and nuclear
weapons problems of World War II, it has now emerged as a mature, powerful and indis-
pensable methodology in scientiˇc research Å providing a third way of doing science and
complementing the traditional approaches of theory and experiment.

Computational science is an eclectic mix of mathematics, computer science and an applied
discipline such as physics. It is concerned with the complete computational process. It not
only seeks to advance science through the use of high-performance and distributed computers
but also to advance the state of the art in computer systems by studying scientiˇc applications
that expose the limitations and weaknesses of these systems.
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In this paper we describe a computational science research programme that is primarily
aimed at engineering numerically robust software that can exploit high-performance and
distributed computers to study electron collisions with atoms and ions. A further aim is to
provide a realistic test bed application of substance that can inform and stimulate the further
development of modern computer systems including Grid technology and reconˇgurable high-
performance computers. We begin by brie�y introducing the physics of electron collisions
(e-collisions). Next we sketch an apposite mathematical model that is based on R-matrix
theory [1]. A computational realization of this model that can exploit Grid technology,
2DRMP-G, is presented in Sec. 3 (e-science). Finally, we describe the use of the CADNA
library [2], a software tool based on stochastic discrete arithmetic that is used to validate the
stability of numerical software.

1. PHYSICS: E-COLLISIONS

Electron collisions with atoms and ions have been the subject of international interest
for many years. Data from these processes are of importance in the analysis of physical
phenomena in many scientiˇc and technological areas including aeronomy, astrophysics,
biomedicine, gaseous electronics, surface physics, industrial plasmas, environmental, fusion,
semiconductor and other technologies [3].

Despite the importance of these applications, relatively little accurate cross-section data
is known for many of the processes involved. For example, no accurate cross-section data,
involving high lying excited states, have been calculated for electron collisions with the
simplest atomic target, hydrogen. Accordingly, the focus of this paper is on electron impact
excitation of H-like atoms and ions at these, so-called, intermediate scattering energies.

Fig. 1. Electron impact excitation. Here a free electron collides with an H-like atom or ion in its ground
state resulting in an excited H-like atom and a free electron. This ˇnal state can be reached directly or

via an intermediate resonance state

This process is illustrated in Fig. 1. The process can occur directly or via an intermediate
resonance state, i.e., a quasi-bound state with a long lifetime. Resonance analysis is important
in elucidating the collision process and in determining sensitive parameters against which
theoretical computations and experimental results may be compared. Modelling this process is
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computationally demanding because account must be taken of the inˇnite number of continuum
states of the ionized target and of the inˇnite number of target bound states lying below the
ionization threshold.

2. MATHEMATICAL MODEL: R-MATRIX THEORY

R-matrix theory was ˇrst introduced in nuclear physics by Wigner [5,6]. Around the 1960s
it was realized that this approach could also be used in atomic and molecular physics [7].
Since then the R-matrix method has proved to be a remarkably stable, robust and efˇcient
technique for solving the close-coupling equations that arise in electron collision theory [1].
We begin by sketching general R-matrix theory for (N + 1)-electron targets.

2.1. General R-Matrix Theory. General R-matrix theory starts by dividing the conˇgura-
tion space describing the collision process into two regions by a sphere of radius r = a, where
a is chosen so that the charge distribution of the target atom or ion is contained within the
sphere. In the internal region (r � a) exchange and correlation effects between the scattering
electron and the target electrons must be included, whereas in the external region such effects
can be neglected thereby considerably simplifying the problem.

In the internal region the (N + 1)-electron wave function at energy E is expanded in
terms of an energy independent basis set, ψk, as

ΨE =
∑

k

AEkψk. (1)

The basis states, ψk, are themselves expanded in terms of a complete set of numerical orbitals,
uij , constructed to describe the radial motion of the scattered electron. The expansion
coefˇcients of the uij set can be determined by diagonalizing the following Hamiltonian
matrix:

(ψi|HN+1|ψj) = EN+1
k δij , (2)

where HN+1 is the (N+1)-electron Hamiltonian operator. This in turn allows the construction
of the R-matrix,

Rij =
1
2a

∑

k

ωik(a)ωjk(a)
EN+1

k − E
, (3)

at r = a, where the amplitudes ωik(a) and the poles EN+1
k of the R-matrix are obtained

directly from the eigenvectors and eigenvalues of Eq. (2).
In the outer region the equations reduce to coupled second-order ordinary differential

equations. Using a technique such as 1D propagation, implemented in the FARM package [4],
these equations can be integrated outwards, subject to the R-matrix boundary conditions at
r = a, and ˇtted to an asymptotic expansion. This determines the K-matrix from which the
scattering observables including inelastic cross sections and resonance positions and widths
can be derived. While the R-matrix is determined by a single diagonalization in the inner
region, the coupled equations in the outer region must be solved for each scattering energy
of interest.

It can be shown that dimension of the Hamiltonian matrix, n, within the internal region
is proportional to a2. Since matrix diagonalization is an n3 process the size of the inner-
region computation rapidly increases when transitions to higher level states are computed.
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For example, in electron scattering by atomic hydrogen a radius of a = 60 a.u. is needed to
envelop the n = 4 target states, while a radius of 360 a.u. is required to envelop the n = 10
target states. This results in an increase in diagonalization time by a factor of approximately
46,000. Solution of the corresponding dense Hamiltonian matrices, which are typically of
the order of 50,000 to 100,000, places considerable demands on both computer time and
numerical robustness.

In the following subsection we outline an alternative approach that is designed for scatter-
ing from H-like systems. It has the advantage of extending the boundary radius of the inner
region far beyond that which is possible using the traditional ®one-sector¯ technique.

2.2. 2D R-Matrix Theory. As in general R-matrix theory the two-electron conˇguration
space (r1, r2) is divided into two regions by a sphere of radius a centered on the target
nucleus [8]. However, in the 2D variant the inner region is further divided into subregions as
illustrated in Fig. 2.

Fig. 2. Subdivision of the inner-region conˇguration space (r1, r2) into a set of connected subregions

labelled 0 . . . 9

Within each subregion energy-independent R-matrix basis states, θLSπ
k (r1, r2), are ex-

panded in terms of one-electron basis functions, νij , whose radial forms are solutions of the
Schréodinger equation. The expansion coefˇcients of the νij set are obtained by diagonalizing
the corresponding two-electron Hamiltonian matrix. The expansion coefˇcients and the radial
basis functions are then used to construct surface amplitudes, ωinl1l2k, associated with each
subregion edge i ∈ {1, 2, 3, 4}.

For each incident electron energy a set of local R-matrices (Rji) can be constructed from
the surface amplitudes as follows:

(Rji)n′ l
′
1l

′
2nl1l2

=
1

2ai

∑

k

ωjn′ l
′
1l

′
2kωinl1l2k

Ek − E
, j, i ∈ {1, 2, 3, 4}. (4)

Here ai is the radius of the ith edge; E is the total energy of the two-electron system and Ek

are the eigenenergies obtained by diagonalizing the two-electron Hamiltonian in the subregion.
By using the local R-matrices, the R-matrix on the boundary of the innermost subregion can
be propagated across all subregions, working systematically from the r1-axis at the bottom
of each strip to its diagonal as illustrated in Fig. 2, to yield the global R-matrix, �, on the
boundary of the inner and outer region (r1 = a).

Finally, the global R-matrix � is transformed onto an appropriate basis for use in the
outer region. The resulting outer-region equations are identical in form to those described in
Subsec. 2.1.
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3. COMPUTATIONAL MODEL: E-SCIENCE

The 2D propagator model described in the previous section has been implemented as the
suite of seven programs depicted in Fig. 3. These programs have been designed to operate on
serial machines and to exploit distributed memory and shared memory parallelism found on
tightly coupled high-performance clusters.

Fig. 3. The 2DRMP package. Blocks A and B are independent of the collision energy and need only
be performed once, while blocks C and D are dependent on the collision energy and must be repeated

hundreds of times

3.1. 2DRMP. We begin by sketching the 2DRMP suit. Each of the seven programs
belongs to one of the four functional blocks shown in Fig. 3: A, B, C or D. The blocks must
be executed sequentially and communication between programs is through ˇles.

Block A contains two independent programs that are not computationally intensive. Pro-
gram 1 constructs the atomic basis functions used in the transformation of the global R-matrix,
�, while program 2 computes radial integrals to be used in the construction of the Hamiltonian
matrix in off-diagonal subregions.

In block B, program 3 constructs a subregion Hamiltonian matrix, program 4 diagonalizes
the matrix, and program 5 constructs the corresponding surface amplitudes from the matrix's
eigenvalues and eigenvectors. Each column in this block corresponds to an independent
subregion.

Block C uses program 6 to propagate the global R-matrix, �, across all the subregions of
the inner region. Each element in this block corresponds to a series of propagations, one for
each scattering energy.

Block D corresponds to an outer-region program such as FARM. Again each element in
this block corresponds to a range of scattering energies.

Programs 3, 4, 5 and 6 can execute in serial or parallel. For example, program 3 can
construct a matrix in serial or in parallel using either MPI or OpenMP. Programs 4, 5 and 6
have a similar capability. On a tightly coupled supercomputer, such as HPCx [9], parallelism
tends to be horizontal with, for example, many matrices being computed simultaneously
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(controlled by MPI) and each being spread over several processors (controlled by either
MPI or OpenMP). This is illustrated by the dotted rectangle in Fig. 3 where each matrix
construction is itself spread across a 2 × 2 grid of processors.

3.2. 2DRMP-G. In common with many traditional scientiˇc applications 2DRMP does
not have any real-time constraints in its execution or urgency in obtaining results. There is,
therefore, no pressing need to use the fastest available computational resource. Any collection
of computational resources that can deliver results in a reasonable time is acceptable. A Grid
infrastructure provides an environment for the cooperative use of distributed computational
and storage resources and Grid middleware enables the secure use of remote resources and
the transport of data within the infrastructure. On a Grid of heterogeneous computers, such as
the UK L2 Grid [10], parallelism within block B can extend both vertically and horizontally.
This is illustrated by the darkened elements in Fig. 3 where each element is computed at a
different site each with potentially different system architectures. For example, one of the
matrix diagonalizations (program 4) might be performed on a commodity PC using LAPACK,
while the second could use ScaLAPACK, or a multi-threaded version of LAPACK, across a
2 × 2 grid on tightly coupled cluster.

In this subsection we describe a Grid aware version of 2DRMP aimed speciˇcally at
computing resonance parameters in electron scattering by H-like atoms and ions at intermediate
energies. 2DRMP-G is composed of the three elements depicted in Fig. 4.

Fig. 4. The 2DRMP-G Grid architecture composed of the three components VisRes-G, rVis and a task
pool of tasks from 2DRMP

1. VisRes-G: A GUI tool for computational steering [11].

2. rVis: The Grid middleware tool used to control the Grid computations.
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3. 2DRMP: The 2DRMP suite of programs described in Subsec. 3.1 that contributes tasks
to the task pool.

The Grid middleware tool rVis is written in Java and built on top of Globus 2. It uses the
concept of a task pool to deˇne the processing that is possible at any stage during execution.
A work �ow coordinator controls execution by scheduling tasks to the task pool. The work
�ow dependencies of the application are deˇned in a simple XML database. A resource-task
allocation component attempts to match tasks that are in the task pool with resources that are
currently available in the computation Grid. The job control component is used to control the
execution of a task on a computational resource. Using Globus 2 its role is to package and
transport the data that a task requires, to start job execution, to retrieve results, to detect and
reschedule a task if execution fails and to log job submission details.

Fig. 5. The initial eigenphase data returned to VisRes-G by 2DRMP-G is illustrated by the crosses.

By clicking and dragging across the lower graph a new collection of Grid computations is initiated,
collected and redisplayed in the form of the circles

VisRes-G, as illustrated by Fig. 5, is a comprehensive visual tool that facilitates the
graphical display, manipulation and analysis of resonance data computed over a Grid.

Resonances are revealed when the eigenphase sum, δ(E), rises rapidly by approximately π
radians over a small range of collision energies. Their positions are unknown at the outset of
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the computation and the initally chosen scattering energies often provide an insufˇcient number
of data points within the vicinity of the resonance to enable its characteristics accurately to
be determined. Hence the need for computational steering arises.

VisRes-G is initially used to select an initial range of collision energies and to instigate the
computation of the tasks depicted in Fig. 3. VisRes-G uses rVis to control the computation of
tasks across the Grid. The output from the ˇnal stage of 2DRMP is automatically returned to
VisRes-G and displayed on the user's workstation as illustrated by the crosses in Fig. 5. By
clicking and dragging across the graph the user selects collections of points where extra data
may be required, thereby steering the computation towards potential resonances. These tasks
are added to the task pool, each task corresponding to the computation of an eigenphase at a
distinct energy. The resulting eigenphase data is returned to VisRes-G and merged with the
original data. For example, the data from three new collections of points are displayed as
circles in Fig. 5. Further data can be generated in a similar fashion until the user is satisˇed
that all the necessary data has been computed. The position and width of the resulting
resonances can then be analyzed using tool-box functions.

4. NUMERICAL VALIDATION: CADNA

A novel aspect of this work is the rigorous investigation of the numerical validation of
large-scale distributed scientiˇc computation. This is a topic of considerable importance,
but one that has received relatively little practical attention in the computational science
community. It is well known that the �oating point arithmetic commonly used in scientiˇc
computing only approximates exact arithmetic. In consequence, each arithmetic statement
generates a round-off error. It is not uncommon to ˇnd that the same code, using the same
data, produces different results when executed on different platforms. This is particularly the
case when different levels of compiler optimization are used. Sometimes the result is not
just inaccurate but totally wrong. In a Grid environment, where the overall computation may
involve contributions from many heterogeneous platforms, controlled and rigorous numerical
validation is essential.

Using Discrete Stochastic Arithmetic [12, 13] the CADNA (Control of Accuracy and
Debugging for Numerical Applications) library [2] is a tool designed to estimate precisely
the computing error in computer generated results, i.e., to estimate the number of common
signiˇcant ˇgures between the computed result and the exact result.

The basic idea is to perform the same computation several times propagating the round-off
error differently each time. The computer's deterministic arithmetic is replaced by a stochastic
arithmetic where each elementary operation is performed N times before the next instruction
is executed. For each operation N samples are obtained. The mean value and standard
deviation characterize the corresponding stochastic number. The value of a stochastic number
is the mean value of the different samples. The number of exact signiˇcant digits in the
number is estimated using the mean value and the standard deviation. If all the samples
are zero or if the number of exact signiˇcant digits is less than one the number is deˇned
as a computational zero denoted by @.0. This means that a computational zero is either a
mathematical zero or a number without any signiˇcance.

The CADNA Fortran implementation is a set of data types, functions and subroutines
that may be easily incorporated into any Fortran program. In essence, Fortran types are
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simply replaced by the corresponding stochastic types. The stochastic numbers are N -tuples
containing the perturbed �oating point values. Arithmetic operators, logical operators and
intrinsic functions have been overloaded so that when an operator is used the operands are
N -tuples and the returned result is an N -tuple. The library, therefore, enables a scientiˇc
code to be executed using random arithmetic without having to make major changes to the
original code. During execution when a numerical anomaly is detected a message is written
to a special ˇle. At the end of the run the user must consult the ˇle, analyze the contents and
determine if code changes are required. A nice feature is that intermediate and ˇnal results
are output only to the exact number of digits.

In this project we are using CADNA systematically throughout 2DRMP to estimate the
computing error of intermediate and ˇnal results. CADNA has been integrated into a selection
of subroutines in sequential parts of the 2DRMP package to investigate numerical instability.
In particular, the algorithm to compute the two-dimensional radial integrals (Slater integrals)
has been modiˇed to remove the numerical instabilities identiˇed by CADNA [14]. We
have also investigated the use of CADNA to control dynamically the optimum integration
step used in the computation of the Slater integrals; i.e., the step for which the global error,
consisting of both the truncation error and the round-off error, is minimal [15]. This has
enabled the computation of benchmark results for a range of Slater integrals accurate to 10
exact signiˇcant digits [14].

Work is also in progress to implement CADNA within the complete 2DRMP package.
Here we intend to employ MPI CADNA, a variant of CADNA, to investigate the numerical
stability of 2DRMP code across a large collection of processors in Grid'5000 [16].

CONCLUDING REMARKS

In this paper we have described a computational science research programme aimed at
exploiting high-performance and distributed computers to enable virtual experiments to be
performed where electrons collide with H-like atoms and ions. This work resulted in the
development of a Grid aware two-dimensional R-matrix propagator, 2DRMP-G and an asso-
ciated prototype visualization and computational steering tool, VisRes-G. VisRes-G contains
software to monitor the resources that are available in the Grid and dynamically to allocate
available tasks to available resources. A major beneˇt of VisRes-G is that it enables the
user to focus solely on steering the physics without having to be aware of the computational
resources being used.

Like all scientiˇc software, 2DRMP-G has approximations woven into its fabric at each
level: in its mathematical model, its computational model and its computer implementation.
One important source of error that is difˇcult to understand and manage is the propagation
of round-off error that originates from the use of ˇnite precision arithmetic. This problem
is exacerbated in a supercomputing environment where trillions of �oating-point operations
may be performed per second and in a Grid environment, where the overall computation may
involve contributions from many heterogeneous platforms. Controlled and rigorous numerical
veriˇcation is recommended to give conˇdence that the computed results are acceptable. We
have advocated the use of CADNA to provide such a software ®health check¯.
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