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NONLINEAR FLUCTUATION-INDUCED RATE
EQUATIONS FOR LINEAR BIRTHÄDEATH PROCESSES

J. Honkonen
Department of Military Technology, National Defence College, Helsinki

The Fock-space approach to the solution of master equations for the one-step Markov processes is
reconsidered. It is shown that in birthÄdeath processes with an absorbing state at the bottom of the
occupation-number spectrum and occupation-number independent annihilation probability occupation-
number 
uctuations give rise to rate equations drastically different from the polynomial form typical of
birthÄdeath processes. The 
uctuation-induced rate equations with the characteristic exponential terms
are derived for Mikhailov's ecological model and Lanchester's model of modern warfare.
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INTRODUCTION

Temporal evolution of quantities such as population density in ecology, concentration of
reactants in physical chemistry and force levels in combat models in operations research are
often described in terms of deterministic differential equations (rate equations). This implies
the deliberate departure from the stochastic nature of the process described to arrive at simple
equations. Usually, the model underlying the particular system of differential equations
allows for construction of master equations for the probability density functions (PDF) of the

uctuating quantities as well. However, it often happens that it is not the full solution of these
equations, which is of practical interest, but only a few moments of the random quantities,
let alone those cases, when the PDF's cannot be found in a closed form. In most models the
rate equations may, e.g., be inferred from the stochastic model as the equations governing
the evolution of expectation values of the 
uctuating quantities, when all correlations are
neglected.

To illustrate this procedure, let us take as an example the classic Verhulst (or logistic)
model with the rate equation

dn

dt
= −βn + λn − γn2, (1)
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in which β is the death rate of the ®particles¯ with the population size n; λ is the birth rate
and γ is the damping coefˇcient. The usual form of the generic master equation for the
probability density functions P (t, n) (with integer n) of the stochastic logistic model is

dP (t, n)
dt

= β(n + 1)P (t, n + 1) + λ

[
(n − 1) − (n − 1)2

N

]
P (t, n − 1)−

−
(

βn + λn − λ

N
n2

)
P (t, n), (2)

where N is the ®natural¯ size of the population. This set of equations allows the following
®transport¯ interpretation: particles jump from states with higher occupation number (n + 1)
to states with lower occupation number (n) with transition rates β(n+1), and vice versa with
the transition rates λn − γn2.

Usually Eq. (2) is amended by the condition that the state with vanishing occupation
number is an absorbing state and the state with the occupation number N is a re
ecting state.
When correlations are neglected, the stochastic logistic model (2) reproduces the rate Eq. (1)
as the evolution equation for the expectation value of the occupation number. If the nonlinear
term is absent in the rate Eq. (1), then it is an exact equation for the expectation value. This
is because the transition rates in the model vanish together with the occupation number of the
originating state. Indeed, consider the following linear birthÄdeath model:

dP (t, n)
dt

= [α + β(n + 1)]P (t, n + 1) + [κ + λ(n − 1)] P (t, n − 1)−

− (α + βn + κ + λn)P (t, n), (3)

with the empty state as an absorbing state. The rate equation for the expectation value 〈n〉
following from (3) is

d〈n〉
dt

= κ + (λ − β)〈n〉 − α [1 − P (t, 0)] .

Thus, the complete linear expression for the birth rate gives rise to terms of anticipated form,
whereas the constant term in the linear death rate produces a term which does not ˇt in
the approximation of discarding correlations. In order to obtain a closed equation for the
expectation value 〈n〉, the probability of the absorbing state P (t, 0) should be expressed in
terms of 〈n〉, which is not simple.

The aim of this paper is, ˇrst, to demonstrate that this is not an academic problem only,
but there are important stochastic models sharing this feature. Second, it will be shown how
a closed approximate equation for the expectation value of the occupation number may be
constructed in this situation.

1. STOCHASTIC MODELS WITH DEATH RATES INDEPENDENT
OF OCCUPATION NUMBER

It is a quite common feature of stochastic models in biology and chemistry that the
transition rates are proportional to the occupation number of the originating state, perhaps
multiplied by some polynomial in the occupation number. However, birth rates which remain
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ˇnite at vanishing occupation number of the originating state do occur, but as we have seen
in example (3), this does not lead to complications in the construction of rate equations from
master equations.

On the contrary, models with death rates possessing an independent of the occupation
number term are rare. An example is the ecological model of the LotkaÄVolterra type
proposed by A. S. Mikhailov [1], whose rate equations are

dN

dt
= (BM − A)N,

dn

dt
= (bM − a)n,

dM

dt
= Q − GM − CN − cn. (4)

Here, N and n are population densities of two species competing for the same type of food
with the density M . Note that on the right-hand side of the third (linear) equation in (4) for
the rate of change of the food density M there are both a growth term independent of all
variable densities and decay terms independent of the food density M .

Another example is Lanchester's model of modern warfare, a classic model in combat
modeling in operations research, in which only death rates independent of the occupation
number of the originating state are present. Lanchester's models of warfare are designed
to describe dynamics of gross or average combat loss rates (attrition rates). They were
proposed by F.W. Lanchester in 1914 [2] and Å presumably independently Å by M. Osipov
in 1915 [3]. A fairly detailed account and comprehensive review of various generalizations and
ramiˇcations in operations research may be found in [4]. It should also be noted that recently
Lanchester's models of warfare have attracted considerable attention in ecology as well [5].

Lanchester's model of modern warfare is based on the idea of concentration of aimed
friendly ˇre on particular enemy units at a time. This means that the enemy loss rate is
independent of the enemy force level Å a quantity describing the effectiveness of the army in
combat Å but proportional to the friendly force level. Therefore, the deterministic differential
equations for the force levels of the Red Army nr and the Blue Army nb in Lanchester's
model for modern warfare are

dnr

dt
= −αrnb,

dnb

dt
= −αbnr, (5)

where αr and αb are the attrition coefˇcients. In kinetics described by (5) there is a conser-
vation law, the famous Lanchester's square law:

αrn
2
b − αbn

2
r = const. (6)

The following discussion will be carried out for Lanchester's model of modern warfare. The
corresponding results for Mikhailov's ecological model are readily inferred from those of
Lanchester's model.

The generic master equations for the stochastic model of modern warfare may be con-
structed in the same way as those for the Verhulst model (1) with the result (see, e.g., [4]):

dP (t, nr, nb)
dt

= αrnb [P (t, nr + 1, nb) − P (t, nr, nb)] +

+ αbnr [P (t, nr, nb + 1) − P (t, nr, nb)] , (7)

where nr and nb are the (integer) force levels of the Red and the Blue, respectively. The
states in which either nr or nb vanishes are absorbing states.
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If the initial condition is a ˇxed-number force level for both sides, then (7) is a ˇnite set of
coupled linear ordinary differential equations, but in indeˇnite number. For more challenging
initial conditions like an initial Poisson distribution of force levels we arrive at an inˇnite set
of coupled equations. This suggests that a Fock space spanned by creation and annihilation
operators familiar from quantum mechanics might be useful to construct solutions without
apparent dependence on the force levels (occupation numbers).

2. SOLUTION OF MASTER EQUATIONS IN FOCK SPACE

Solution of coupled master equations was ˇrst cast in a quantum-ˇeld-theoretic form by
Doi [6] with subsequent reinventions by Zel'dovich and Ovchinnikov [7] and Grassberger
and Scheunert [8]. For simplicity of notation, we will describe the solution of coupled master
equations with the use of annihilation and creation operators in a Fock space in the example of
the single-species death process with master equations obtained from (3) by putting κ = λ = 0.

Deˇne the Fock space through the usual annihilation and creation operators â, â+ and the
basis vectors |n 〉

â| 0 〉 = 0, â+|n 〉 = |n + 1 〉, [ â, â+] = ââ+ − â+â = I, (8)

with the normalization 〈n |m 〉 = n!δnm. Introduce then the state vector

|Φ 〉 =
∞∑

n=0

P (t, n)|n 〉, P (t, n) =
1
n!

〈n |Φ 〉 (9)

for a collective description of all PDF's. From (3) and (9) the kinetic equation in the form

d|Φ 〉
dt

= (α+β)P (t, 1)| 0 〉+
∞∑

n=1

{[α + β(n + 1)]P (t, n + 1) − (α + βn)P (t, n)} |n 〉 (10)

follows. The aim here is to rewrite all terms on the right-hand side in a form in which the PDF
with a given occupation number n is multiplied by a basis vector with the same n without
any other n dependence, e.g., nP (t, n)|n 〉 = â+âP (t, n)|n 〉 and (n + 1)P (t, n + 1)|n 〉 =
âP (t, n + 1)|n + 1 〉 due to the deˇnitions in (8).

For the terms in the death rate independent of n a special annihilation operator Â is needed,
however, with the properties Â| 0 〉 = 0 and Â|n 〉 = |n − 1 〉, n � 1 (cf. â|n 〉 = n|n − 1 〉).
Note that no such complication arises for constant terms in the birth rate. The expression
of this operator in terms of the usual operators â+ â is not obvious, but it may be readily
checked that in the normal form the special operator is represented by the (formal) sum [9]

Â =
∞∑

n=1

(−1)n−1

n!
(â+)n−1ân, (11)

which is the root of the nonlinearity brought about by this term in the rate equation for the
expectation value 〈n〉.
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The kinetic equation (10) may then be cast in the following operator form with the formal
operator solution

d|Φ 〉
dt

= L̂(â+, â)|Φ 〉, |Φ(t) 〉 = etL̂(â+, â)|Φ(0) 〉,

where the Liouville operator independent of the occupation number

L̂(â+, â) = (I − â+)(αÂ + βâ)

has been introduced. Here, I is the identity operator.
To calculate averages of occupation-number-dependent quantities the projection vector

〈P | =
∞∑

n=0

1
n!

〈n | =
∞∑

n=0

1
n!

〈 0 |ân = 〈 0 | eâ (12)

is needed to yield

〈Q(n)〉 =
∞∑

n=0

Q(n)P (t, n) = 〈P |Q(â+â)|Φ 〉. (13)

It is convenient to pull the coherent-state exponential of the projection vector (12) to the right
in the expectation value (13) with the aid of the relation eââ+ = (â+ + I) eâ. Thus,

〈Q(n)〉 = 〈 0 |Q[(â+ + I)â] etL̂′(â+, â)|Φ′(0) 〉, (14)

with the shifted Liouville operator L̂′(â+, â) = L̂(â+ + I, â) and the initial-state vector

|Φ′(0) 〉 =
∞∑

n=0

P (0, n)(â+ + I)n| 0 〉 = Φin(a+)| 0 〉.

3. VARIATIONAL PROBLEM FOR THE GENERATING FUNCTION

To construct a perturbative expansion of the expectation value (14) decompose the Liou-
ville operator to a free-ˇeld and an interaction part: L̂′ = L̂′

0 + L̂′
I , introduce time-dependent

operators with free-ˇeld dynamics: â±(t) = e−tL̂′
0 â± etL̂′

0 to arrive at the T -exponential of
the interaction picture (see, e.g., [10] for details):

〈Q(n)〉 = 〈 0 |QN [I, â(t)] T exp

⎛
⎝

∞∫
0

dτ L′
I(â

+, â)

⎞
⎠ |Φ′(0) 〉,

where QN [â+(t) + I, â(t)] is the normal form of Q[(â+ + I)â]. Hori's formula gives rise to
the following functional form of Wick's theorem for the time-ordered exponential:

〈Q(n)〉 = exp
(

δ

δa
Δ

δ

δa+

) ⎧⎨
⎩QN [1, a(t)] exp

⎛
⎝

∞∫
0

dτ L′
I(a

+, a)

⎞
⎠Φin(a+)

⎫⎬
⎭

∣∣∣∣∣∣
a±→0

,
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with the propagator

Δ(t, t′) = θ(t − t′)[â(t)â+(t′) − â+(t′)â(t)].

Consider a slightly more general quantity, the generating functional

G(J, J+, Jin) = exp
(

δ

δa
Δ

δ

δa+

)
×

×

⎧⎨
⎩ exp

⎛
⎝

∞∫
0

dτ
[
L′

I(a
+, a) + Ja + J+a+

]
+ JinΦin(a+)

⎞
⎠

⎫⎬
⎭

∣∣∣∣∣∣
a±→0

, (15)

where J , J+ and Jin are sources. The sources J and J+ are functions of time, while Jin

and the term Φin(a+) are time-independent. The expectation value 〈n〉 may be expressed in
terms of perturbative expansions of the derivatives

a(t) =
δ ln G(J+, J, Jin)

δJ(t)
, a+(t) =

δ ln G(J+, J, Jin)
δJ+(t)

. (16)

To infer differential equations for a(t) and a+(t), it is convenient to use the generating func-
tional of one-irreducible correlation functions deˇned as the (functional) Legendre transform

Γ(a+, a, Jin) = lnG(J+, J, Jin) − a+J+ − aJ. (17)

In the deˇnition of the functional (17) it is implied that all the functions J and J+ on the
right-hand side are expressed as functionals of a and a+ from the solution of Eq. (16). The
standard rules for the construction diagrammatic expansion for the functional Γ on the basis
of the representation (15) of the functional G may be found, e.g., in [10].

From the deˇnition (17) it follows that

J(t) = −δΓ(a+, a, Jin)
δa(t)

, J+(t) = −δΓ(a+, a, Jin)
δa+(t)

.

These equations are the stationarity equations of the variational functional �(a+, a, Jin)

�(a+, a, Jin) = Γ(a+, a, Jin) + a+J+ + aJ,

where J and J+ are considered ˇxed parameters. At the stationarity point the functional
�(a+, a, Jin), obviously, coincides with the generating functional ln G(J+, J, Jin). The point
of introducing the variational functional � is that the dependence on the variables a and a+

is explicit, contrary to relations in (16). Therefore, solution of the variational problem for the
functional � allows one to obtain differential equations for a and a+ directly. This approach
also allows one to ˇnd nonperturbative solutions.

Then, instead of calculating expectation values like 〈â(t)〉 and 〈â+(t)〉 perturbatively they
may also be found as solutions of the stationarity equations of the functional �, whose

uctuation-independent part is

�(a+, a, Jin) = S(a+, a) + a+J+ + aJ + JinΦin[a+(0)] + . . . ,
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where the ellipsis stands for terms of the Taylor expansion of � in a(t), a+(t) and Jin, whose
graphical expression contains loops of propagators expressing all 
uctuation effects, and S is
the dynamic action:

S(a+, a) = −
∞∫
0

dt

∞∫
0

dt′ a+(t)K(t, t′)a(t′) +

∞∫
0

dt L′
I(a

+, a).

Here, K is the kernel of the differential operator of L̂′
0: KΔ = 1.

4. FLUCTUATION-IMPROVED RATE EQUATIONS FOR LANCHESTER'S MODEL
OF MODERN WARFARE AND MIKHAILOV'S ECOLOGICAL MODEL

The dynamic action for Lanchester's model of modern warfare constructed according to
the procedure outlined above is

S(a+
r , ar, a

+
b , ab) = −a+

r ∂tar − a+
b ∂tab−

− αr(1 + a+
b )aba

+
r

∞∑
n=0

(−1)n

(n + 1)!
(1 + a+

r )nan+1
r −

− αb(1 + a+
r )ara

+
b

∞∑
n=0

(−1)n

(n + 1)!
(1 + a+

b )nan+1
b . (18)

The contribution of the initial condition function looks especially simple in the case of
Poisson-distributed initial force levels with the averages nr0, nb0. In this case the variational
functional is of the form

�(a+
r , ar, a

+
b , ab) =

= S(a+
r , ar, a

+
b , ab) + a+

r J+
r + arJr + a+

b J+
b + abJb + a+

r (0)nr0 + a+
b (0)nb0 + . . .

The stationarity equations for the action (18) have a solution with a+
r = a+

b = 0, in which
case ar = 〈nr〉 and ab = 〈nb〉 and obey the following pair of equations:

dar

dt
= −αrab(1 − e−ar ),

dab

dt
= −αbar(1 − e−ab). (19)

For large average force levels the exponentials are negligible in Eq. (19) and deterministic
Lanchester's equations (5) for force levels are recovered. For generic values of force levels
these exponentials approximate the contribution of the PDF of the absorbing states to the rate
equation.

From (19) a conservation law follows in the form:

αr

[
a2

b + 2ab ln
(
1 − e−ab

)
− 2Li2

(
e−ab

)]
−

− αb

[
a2

r + 2ar ln
(
1 − e−ar

)
− 2Li2

(
e−ar

)]
= const,

which replaces Lanchester's square law (6). Here, Li2 is the dilogarithm.
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Relations in (19) also provide a quantitative statement that the 
uctuation-induced devia-
tions from deterministic Lanchester's equations are exponentially small in the average force
levels. Inspection of the structure of the perturbation expansion reveals that the exponential
fall-off survives to higher orders of perturbation theory. A similar effect is produced by

uctuations also in Mikhailov's model, whose rate equations in (4) are replaced by

dN

dt
= (BM−A)N,

dn

dt
= (bM−a)n,

dM

dt
= Q−GM−CN

(
1 − e−M

)
−cn

(
1 − e−M

)

with a signiˇcant effect for small values of the food density M .

CONCLUSION

A variational approach within the Fock-space method of solution of master equations has
been used to ˇnd rate equations for averages of 
uctuating occupation numbers in birthÄ
death processes. It has been shown that in the case of a death rate independent of the
occupation number a special nonpolynomial annihilation operator (11) is needed within the
Fock-space approach. Nonpolynomial nonlinearities in the dynamic action of the Fock-space
method are shown to appear due to this, even if the transition rates are linear functions of the
occupation numbers. These nonlinearities show in the rate equations as well, which should
be taken into account, when the underlying stochastic process is described at the level of
rate equations. Fluctuation-improved rate equations have been proposed for both Lanchester's
model of modern warfare and Mikhailov's ecological model.
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