
�¨¸Ó³  ¢ �—�Ÿ. 2008. ’. 5, º3(145). ‘. 544Ä548

Š�Œ�œ�’…�	›… ’…•	�‹�ƒˆˆ ‚ ”ˆ‡ˆŠ…
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A smoother based on an adaptive cubic model [1, 2] and splines with free knots is proposed. The
model uses three reference data points and two parameters of control for estimation of a near optimal
position of knots at the axis x in autotracking mode. The data points are prethinned and corrected by
local linear ˇtting. The coefˇcient table is obtained by standard spline procedure. The efˇciency and
the stability of the smoother with respect to random errors are shown on real noisy data.

�·¥¤²μ¦¥´  ²£μ·¨É³ ¸£² ¦¨¢ É¥²Ö, μ¸´μ¢ ´´Ò° ´   ¤ ¶É¨¢´μ° ±Ê¡¨Î¥¸±μ° ³μ¤¥²¨ [1, 2] ¨
¸¶² °´ Ì ¸μ ¸¢μ¡μ¤´Ò³¨ Ê§² ³¨. „²Ö ¢ÒÎ¨¸²¥´¨Ö ¡²¨§±μ° ± μ¶É¨³ ²Ó´μ° μÍ¥´±¨ ¶μ²μ¦¥´¨Ö Ê§-
²μ¢ ´  μ¸¨  ¡¸Í¨¸¸ ¢ ·¥¦¨³¥  ¢Éμ³ É¨Î¥¸±μ£μ ¸²¥¦¥´¨Ö ³μ¤¥²Ó ¨¸¶μ²Ó§Ê¥É É·¨ μ¶μ·´Ò¥ ÉμÎ±¨
¨ ¤¢  Ê¶· ¢²ÖÕÐ¨Ì ¶ · ³¥É· . „ ´´Ò¥ ¶·μ·¥¦¨¢ ÕÉ¸Ö ¨ ±μ··¥±É¨·ÊÕÉ¸Ö ²μ± ²Ó´Ò³ ²¨´¥°´Ò³
Ë¨É¨·μ¢ ´¨¥³. ’ ¡²¨Í  ±μÔËË¨Í¨¥´Éμ¢ ¶μ²ÊÎ ¥É¸Ö ¸ ¶μ³μÐÓÕ ¸É ´¤ ·É´μ° ¸¶² °´-¶·μÍ¥¤Ê·Ò.
�ËË¥±É¨¢´μ¸ÉÓ ¨ Ê¸Éμ°Î¨¢μ¸ÉÓ ¸£² ¦¨¢ É¥²Ö ¶μ μÉ´μÏ¥´¨Õ ± ¸²ÊÎ °´Ò³ μÏ¨¡± ³ ¶μ± § ´  ´ 
¶·¨³¥· Ì μ¡· ¡μÉ±¨ ·¥ ²Ó´ÒÌ ¤ ´´ÒÌ ¸ ÏÊ³ ³¨.

PACS: 02.30.-f; 02.60.-x; 02.60.Gf

INTRODUCTION

The paper proposes a smoothing procedure that produces a cubic spline s(x; k; cj), j =
1, k, with k � 1 internal knots from a set of data points

{(xi, ỹi)}n
i=1, n � 4, (1)

where ỹi = yi + εi, εi ∈ N(0, σ2); k = [x∗
1, x

∗
2, . . . , x

∗
k], x∗

j ∈ {xi}n
i=1 is a set of knots

detected automatically by the smoother, and cj = [c0j , c1j , c2j, c3j ] is a vector of coefˇcients
of the model's polynomial at interval [x∗

j−1, x
∗
j ], j = 1, k. The smooth function s(x; . . .)

shows the association between xi and ỹi as follows:

ỹi = s(xi; . . .) + ri, i = 1, n, (2)

where s(xi; . . .) = ŷi is the estimation of ỹi, and the ri are residuals.
Smoothers have been used in many applications and are described in a number of ref-

erences [3Ä5]. Recently, we have proposed a new ®4-point approximation¯ based on the
four-point transformation methodology [6Ä8]. The method and the algorithm (LOCUS-P) for
approximation and smoothing data with no or moderate error have been described in [1,2,9].
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The aim of this paper is to enhance the robustness of LOCUS-P for processing noisy
data with complex dependency by piecewise cubic polynomials. There are several ways to
solve this problem leveraging the autotracking piecewise cubic approximation. We mention
two of them. The ˇrst one is that we can employ it to smoothed data. For smoothing (but
not functionally describing) data, there are various methods, such as kernel smoothers [3] or
Friedman's variable span smoother (supersmoother) [4]. As we provide for data description
piecewise functions, it is not necessary to smooth every data point. It is sufˇcient to give
local estimations for several data (trying not to lose any measurement) and to employ the
autotracking piecewise approximation to the estimated data. The paper follows this second
approach.

In [2] we studied approximation of data with complex dependence and no or moderate
error, using a cubic model with a free parameter, in two stages: local and global approxima-
tion. The model plays a three-fold role: ˇrstly, it is used on the local level for expressing
the relation between x and y, secondly, for the construction of an iterative scheme for the
estimation of the model's parameter, and lastly, it enables a global continuous and smooth
approximation in an automatic mode by piecewise cubic polynomials. While in the case of
data with no or moderate errors the proposed autotracking piecewise approximation gives
satisfactory results, in the case of errors with any variance (noisy data), there are problems
with both the quality of the local approximants and the global smoothness (but not con-
tinuity). We succeeded in smoothing noisy data by autotracking piecewise approximation
due to its combination with neural networks [10]. This paper proposes a solution without
using NN.

Section 1 is a short introduction to the cubic model for piecewise approximation based
on four points and provides the necessary formulas. The next section describes the way
we correct and reduce the number of the reference points. Section 3 shows the results of
smoothing real data.

1. A CUBIC MODEL FOR AUTOTRACKING PIECEWISE APPROXIMATION

Consider an additive model
f̃ = f(x) + e. (3)

We present the standard cubic polynomial C = a0 + a1x + a2x
2 + a3x

3 in the parametric
form s(τ ; α, β, r, θ) with three ˇxed (r), one free (θ) and two control (α and β) parameters
by Eq. (4). The curve s(τ ; α, β, r, θ) passes through four points {(x∗, f∗)}, ∗ = τ, α, β, 0,
where τ = x−x0, α = xα −x0, β = xβ −x0, f∗ ≡ f(x∗). The vector r = [fα, fβ, f0]T is set
up of the reference ordinates that are related to data points f̃ . The abscissas xτ , xα, xβ , x0 are
used for evaluation of the vector of weight functions w = [w1, w2, w3]T deˇned by Eq. (5)
and Q. θ is an unknown free parameter:

s(τ ; α, β, r, θ) =

=

wT r︷ ︸︸ ︷
fαw1 + fβw2 + fow3 +θ

Q︷ ︸︸ ︷
τ(τ − α)(τ − β) = Π(τ ; α, β, r) + θQ(τ ; α, β), (4)

where
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Fig. 1. The cubic model s(τ ;α, β, r, θ) (a) and |winKn(αn, βn)| in the logÄlog scale (b)

w1 =
−τ(τ − β)

αγ
, w2 =

τ(τ − α)
βγ

, w3 =
(τ − α)(τ − β)

αβ
,

(5)

γ = β − α; αβγ �= 0;
3∑

i=1

wi = 1.

The quadratic parabola Π(τ ; α, β, r) = wT r passes via three reference points and the cubic
parabola Q = τ(τ − α)(τ − β) is a ®zeroing¯ parabola. Figure 1, a explains how the cubic
parabola s approximates a function f using Π and θQ in the interval [α, β].

As the shape of curve Eq. (4) depends on the selection of the reference points r, we can
use the parameters α, β for controlling the error e(x) = f̃(x) − s(x). For example, using the
model (4) in dynamic mode we ˇx the points (xα, f̃α) and (xβ , f̃β), and move the other two
points (x0, f̃0), (xτ , f̃τ ) with respect to the unmoved curve f̃ . Minimization of e2(x) by the
parameter θ leads to an iterative estimation of θ:

θ̂n = θ̂n−1 + Kn

εn︷ ︸︸ ︷
(f̃n − Π̃n − θ̂n−1Qn), θ̂0 = 0, n = 1, 2, . . . , (6)

where Kn = Qn/

n∑
k=1

Q2
k is an ampliˇcation factor and Π̃n = Π(τn; αn, βn, r̃n), τn =

xn − x0n, r̃ = [f̃αn, f̃βn, f̃0n, ]T .
Equation (6) is a known adaptive procedure in which the output error is applied to input

with the ampliˇcation factor Kn(αn, βn) that decreases as ∼ n−3, i.e., the errors en, eαn,
eβn and e0n from Eq. (3) are suppressed near to a cubic-low because of | win |→ 1 for the
above-described selection of αn and βn [2] (Fig. 1, b).

For automatic tracking of a cubic segment of a curve the criterion of constancy of the
third derivative of the cubic model is used [2].

2. CORRECTION OF THE REFERENCE ORDINATES

The critical part of the piecewise approximation by Eq. (6) in the case of noisy data is
Π̃n = Π(τn; αn, βn, r̃n). It is clear that the reference ordinates r̃n of the local approximants
must be adjusted in some way. Here, we propose a process that does not need the correction
of every data point.
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Consider M data points (xi, f̃i)i=1,M . We describe the algorithm of the piecewise func-
tional smoothing in four steps with remarks:

1. Thinning of data points by selection of N 	 M points. As we will see, the process
can be applied to data with both equidistant and non-equidistant step.

2. Local estimation of the ordinates f̂ of the selected N points. There are many ways how
to get good local point estimations. They have to be effective and take into account every M
data points.

3. Reduction of the estimated N selected points using Eqs. (4)Ä(6) to K points. The
detection of K knots by the ˇrst stage of the autotracking piecewise cubic approximation is
executed on the N estimated points, so the reference ordinates in Eq. (6) have been corrected.

4. Construction of integral approximants based on the reduced K number of estimated
points. To get continuous integral estimation the methods and formulas from the second stage
of the autotracking piecewise cubic approximation can be leveraged, see [1, 2, 9]. To get
not only continuous approximants, but also approximants with continuous ˇrst and second
derivatives, the spline table can be computed based on the reduced K estimated points from
the third step.

3. EXAMPLES

In the previous section we described shortly in four steps the smoothing process based
on local estimation (step 2) and the autotracking piecewise cubic approximation (step 3).
To demonstrate the process we considered real noisy data with both equidistant and non-
equidistant step. From the three data sets the ˇrst one shows the most complex relation.
The ˇgures contain the original data of length M denoted by little squares, the continuous
spline smoothers, the residuals at the bottom of the pictures, the histograms constructed from
the residuals, and the verticals denoting the endpoints of K segments. We also provide the
number N of selected and estimated data points.

Fig. 2. Cross section for π−p collision: a) M = 277, N = 130, K = 24; b) M = 277, N = 57,

K = 20

Figure 2 illustrates smoothing data with equidistant step, the cross sections for π−p
collision [11]. Although a and b splines were evaluated based roughly on every second
and ˇfth locally corrected data, thanks to the autotracking knot detection from the third step
their number was reduced approximately ˇve and three times, to 24 and 20, respectively.
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Fig. 3. Data with non-equidistant step: cross section for np collision (a) and concrete characteristic (b):
a) M = 325, N = 40, K = 10; b) M = 196, N = 18, K = 5

In Fig. 3 we give the smoothing results of two data sets with non-equidistant step: a illus-
trates the cross sections for np collision and b Å the resistance ratio. The reduced autotracked
number of segments and the quality of the piecewise approximants are adequate and acceptable
in all cases.

CONCLUSIONS

The paper describes a smoothing process with local estimations and automatic knot de-
tection for describing noisy data with complex dependence by piecewise continuous cubic
polynomials. The resulting spline tables are slim and the splines provide for both simulated
and real noisy data satisfactory approximation.
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