УДК 539.125.17

О ВЫСТРОЕННОСТИ НАИБОЛЕЕ ЭНЕРГИЧНЫХ СТРУКТУР ГАММА-АДРОННЫХ СЕМЕЙСТВ И ВЗАИМОДЕЙСТВИЯХ АДРОНОВ ПРИ $\sqrt{s}\gtrsim 4$ Тэв

Р.А. Мухамедшин

Институт ядерных исследований РАН, Москва

Обсуждается компланарность самых энергичных подстволов ядерно-электромагнитных каскадов, наблюдаемая в экспериментах с рентген-эмульсионными камерами. Показано, что в рамках современных версий моделей кварк-глюонных струн явление не объясняется флуктуациями каскадного развития и внешними полями, так же как и без предположения о проявлении в адронных взаимодействиях нового процесса с большими поперечными импульсами в лабораторной системе координат при энергиях $\sqrt{s} \gtrsim 4$ ТэВ.

A coplanarity of most energetic subcores of nuclear-electromagnetic cascades found in X-rayemulsion chamber experiments is considered. It is shown that the phenomenon cannot be explained with cascade development fluctuations and external fields within the framework of present-day versions of quark-gluon string models as well as without assuming the manifestation of a new hadron-interaction process characterized with large transverse momenta in the lab. frame at energies $\sqrt{s} \gtrsim 4$ TeV.

введение

Цель данной работы — привлечь внимание ученых, занимающихся физикой высоких энергий, к очень важным экспериментальным результатам, показывающим ограниченность нашего понимания свойств адронных взаимодействий при сверхвысоких энергиях.

Исследования широких атмосферных ливней (ШАЛ) сформировали мнение, что при энергиях частиц первичного космического излучения (ПКИ) $E_0 \gtrsim 10^{16}$ эВ ($\sqrt{s} \gtrsim 4$ ТэВ) взаимодействия адронов так же хорошо описываются моделями кварк-глюонных струн (МКГС) [1–3], как и при ускорительных энергиях. Однако наблюдаются устойчивые эффекты, не вписывающиеся в эту картину, как, например, возрастающая с энергией тенденция к компланарности наиболее энергичных подстволов ядерно-электромагнитных каскадов (ЯЭК) (рис. 1). Впервые этот эффект наблюдался сотрудничеством «Памир» в экспериментах с рентген-эмульсионными камерами (РЭК) [4–6], установленными в горах на высоте 4400 м (в ускорительных терминах — за толстой (594 г · см⁻²) мишенью, на которую падают частицы ПКИ). Эффект был подтвержден в экспериментах [7–9]. Однако важность этого результата по ряду причин остается недооцененной.

Предлагались (в основном, качественно) различные объяснения этого явления — от кинематики дифракционных процессов и «новой» физики (генерации кварков высшей цветовой симметрии при $\sqrt{s} \gtrsim 4$ ТэВ) (см. ссылки [17–20] в [16]) до передачи большого поперечного импульса [10,11] и появления системы с очень высоким спином [12–14], но проблема осталась нерешенной. Прежде всего нужно понять, может ли данный феномен, не слишком хорошо, на первый взгляд, обеспеченный статистически, быть результатом

Рис. 1. Примеры выстроенности четырех ЭВЦ *γ*-*h*-семейств в РЭК. Сотрудничество «Памир»: *a*) семейство, состоящее из *γ*-кластеров; *б*) Pb-28; *в*) Pb-6; *г*) центральная часть события JF2af2. Точки, ограниченные пунктиром, — кластеры *γ*-квантов; ×, + — адроны; ⊕ — адронное гало. Числа обозначают энергию в ТэВ

флуктуаций. Только ответив отрицательно на этот вопрос, можно обсуждать, какие процессы ответственны за это явление и почему оно не было замечено раньше.

1. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Рентген-эмульсионные камеры сотрудничества «Памир» представляют собой либо стопки свинцовых листов по 1 см толщиной, прослоенных рентгеновской пленкой, высотой 60-100 см (т.н. «свинцовые» (Рb) РЭК), либо т.н. «углеродные» (С) РЭК, в которых часть свинца в центре заменена слоем углерода, т.е. являются сэмплингкалориметрами. РЭК регистрируют т. н. гамма-адронные (γ -h) семейства — группы энергичных ($E \ge 4$ ТэВ) γ -квантов и e^{\pm} (далее — γ -квантов) и адронов, инициирующих в РЭК каскады, регистрируемые пленками. Всего зарегистрировано ~ 1000 семейств, в том числе ~ 70 с энергие
й $\sum E_{\gamma}\gtrsim 500$ ТэВ. Эти события наблюдаются после развития ЯЭК в атмосфере, что сильно искажает характеристики первого взаимодействия в каскаде. Для ослабления этого эффекта был разработан метод выделения т.н. энергетически выделенных центров (ЭВЦ), т. е., по сути дела, потоков с наибольшой плотностью энергии в ЯЭК от «исходных» частиц из первого взаимодействия. Применительно к γ -h-семействам, под ЭВЦ подразумеваются наиболее энергичные и относительно изолированные подструктуры (узкие группы адронов и у-квантов или даже одиночные частицы). ЭВЦ выделяются с помощью «декаскадирования» — объединения частиц в подкаскадах, рожденных «исходными» частицами. Для этого с самой энергичной (*i*-й) частицей подкаскада объединяется любая k-я частица при выполнении требования $z_{ik} < Z_c$, где $z_{ik} = R_{ik}(1/E_i + 1/E_k)^{-1}$ (E_i, E_k, R_{ik} — энергии частиц и расстояние между ними). Переменная z_{ik} пропорциональна взаимному поперечному импульсу частиц $p_{t \ ik}$, поэтому при различных значениях параметра декаскадирования Z_c выделяются процессы с разными $\langle p_t \rangle$. При $Z_c \simeq 1$, ~ 4 и ~ 20 ТэВ·см на уровне гор, в среднем, выделяются потоки энергии от «исходных» γ -квантов, π^0 -мезонов и адронов соответственно.

В экспериментах в стратосфере (т.е. с тонкой мишенью) каскадное развитие отсутствует и выстроенность вычисляют применительно к частицам без декаскадирования.

Параметр $\lambda_n = \sum_{i \neq j \neq k}^n \cos 2\varphi_{ij}^k / [n(n-1)(n-2)]$ используется для анализа выстроен-

ности *n* точек. Здесь φ_{ij}^k — угол между векторами, выходящими из *k*-й в *i*-ю и *j*-ю точки; λ_n изменяется от -1/(n-1) в изотропных случаях до 1, когда все точки лежат на прямой линии. Семейство называется выстроенным, если для его *n* наиболее энергичных ЭВЦ выполняется условие $\lambda_n \ge \lambda_{\text{fix}}$. Чаще всего $\lambda_{\text{fix}} = 0.8$; n = 3 или 4.

Ниже используется понятие доли выстроенных семейств $F_{\text{cop}\,n}$, равной отношению числа выстроенных событий $N_{\text{cop}\,n}(\lambda_n \ge 0.8)$, содержащих n ЭВЦ, к полному числу семейств N_{tot} с той же энергией, т.е. $F_{\text{cop}\,n} = N_{\text{cop}\,n}/N_{\text{tot}}$.

Сотрудничеством «Памир» в Рb-РЭК [4] и С-РЭК [15] были получены два набора γ -h-семейств с $\sum E_{\gamma} \ge 700$ ТэВ (энергии взаимодействия $\sqrt{s} \gtrsim 4$ ТэВ), включавших $N_{\rm tot}^{\rm exp} = 14$ событий в Рb-РЭК и $N_{\rm tot}^{\rm exp} = 35$ событий в С-РЭК. Соответствующие доли выстроенных семейств $F_{\rm cop}^{\rm exp}$ равны 0.43 ± 0.17 и 0.26 ± 0.10 .

В эксперименте на г. Канбала (Китай) для γ -семейств с энергией $\sum E_{\gamma} \ge 500$ ТэВ доля выстроенных событий $F_{\text{cop}\ 3}^{\text{exp}} = 0.5 \pm 0.2$ ($N_{\text{cop}\ 3}^{\text{exp}} = 3$ при $N_{\text{tot}}^{\text{exp}} = 6$) [7].

В стратосфере до сих пор зарегистрировано только два семейства с $\sum E_{\gamma} > 1000$ ТэВ, причем с крайне высокой выстроенностью четырех самых энергичных частиц: «Страна» ($\lambda_4 = 0.99$) [8] и JF2af2 ($\lambda_4 = 0.998$) [9].

2. МОДЕЛИРОВАНИЕ

Использовался алгоритм MC0 (см. ссылку [30] в [16]), опирающийся на результаты [2] и экспериментальные данные, наиболее близкий (см. ссылки [31–33] в [16]) к QGSJET [3] и описывающий совокупность данных сотрудничества «Памир» (см. ссылки [35–37] в [16]) при $\sum E_{\gamma} \leq 400$ ТэВ ($\sqrt{s} \leq 3$ ТэВ).

Для оценки влияния процессов с большими p_t использовалась упрощенная эвристическая модель компланарной генерации частиц (МКГЧ) со следующими параметрами: а) множественность $\langle n \rangle \simeq 10$; б) поперечный импульс пяти наиболее энергичных частиц (π и K) в плоскости компланарности $\langle p_T^{cop} \rangle = 2,34$ ГэВ/c; в) поперечный импульс, перпендикулярный к плоскости компланарности, $\langle p_t \rangle = 0,4$ ГэВ/c; г) взаимодействия КГЧ имеют место в каждом ЯЭК от протонов ПКИ при $E_0 \ge E_{0 \text{ соp}}^{\text{th}} = 8$ ПэВ. МКГЧ является очень грубым приближением к реальным процессам при высоких энергиях, имитирующим лишь некоторые основные закономерности компланарной генерации самых энергичных частиц и не затрагивающим энергетические зависимости характеристик КГЧ, которые могут быть логарифмическими [11] или степенными ($\sim \sqrt{s}$) [13].

Около 80 % наблюдаемых семейств инициируется протонами, так как эффективность ядер в их создании быстро падает с ростом массы. Поэтому при изучении выстроенности вклад ядер (как и ЯЭК от протонов, развивающихся в рамках обычных моделей) выражается лишь в создании дополнительного фона и подавлении эффекта.

3. СТАТИСТИЧЕСКИЕ ФЛУКТУАЦИИ И ВЫСТРОЕННОСТЬ

Для оценки вероятности wfluct того, что данные сотрудничества «Памир» определяются флуктуациями, по модели МСО было наиграно 8000 и 3000 наборов семейств, каждый из которых содержал полное число семейств $N_{\rm tot}^{\rm MC0}$, равное экспериментальному, полученному с помощью Pb-PЭK [4] (рис. 2, *a*) и C-PЭK [15] (рис. 2, *б*). На рис. 2 показаны полученные распределения как функции числа $N_{
m cop}^{
m MC0}$ выстроенных семейств в каждом из наборов. Как для Рb-РЭК (рис. 2, а), так и С-РЭК (рис. 2, б) не получено ни одного расчетного набора, совпадающего с экспериментальным, откуда следует, что полная вероятность флуктуационного объяснения результатов этих двух независимых экспериментов меньше $\sim 10^{-7}$.

Рис. 2. Распределения числа наборов семейств как функции $N_{
m cop\,4}$ в каждом из наборов по $N_{\rm tot}=14$ (a) или $N_{\rm tot}=35$ (b) событий, наигранных для Pb-PЭK (a) и C-PЭК (b) (светлые диаграммы); темные кубики — экспериментальные данные: [4] (а) и [15] (б)

С другой стороны, известно, что если в наборе из n событий вероятность удовлетворить какому-то критерию равна p, то вероятность найти в этом наборе k событий, изорить какому то критерию равла *p*, то вероитоств панти в этом пасоре *n* соовтия, удовлетворяющих этому критерию, $P(k) = n!p^kq^{n-k} / [k!(n-k)!]$, где q = 1-p. В нашем случае $n = N_{\text{tot}}^{\text{exp}}$, $k = N_{\text{cop}\ n}^{\text{MC0}}$, $p = F_{\text{cop}\ n}^{\text{MC0}}$, $P(k) = w_{\text{fluct}}^{\text{MC0}}$. В рамках MC0 $F_{\text{cop}\ 4}^{\text{MC0}} = 0,059 \pm 0,003$ и $F_{\text{cop}\ 3}^{\text{MC0}} = 0,209 \pm 0,005$. На этой основе для экспериментов «Памир» и «Канбала» были рассчитаны ожидаемые числа выстроенных

событий $\langle N_{
m cop 3,4}^{
m MC0}
angle = F_{
m cop 3,4}^{
m MC0} imes N_{
m tot}^{
m exp}$, дисперсии и вероятности $w_{
m fluct}^{
m MC0}$. Для семейств «Страна» [8] и JF2af2 [9] были рассчитаны вероятности наблюдения этих событий.

Таблица содержит сводные данные по пяти статистически независимым экспериментам. Очевидно, полная вероятность получить эти результаты благодаря флуктуация равна $W_{\text{fluct}}^{\text{MC0}} \sim 9 \cdot 10^{-5} \times 1.5 \cdot 10^{-4} \times 9 \cdot 10^{-2} \times 3 \cdot 10^{-3} \times 6 \cdot 10^{-4} \simeq 3 \cdot 10^{-15}$, т. е. $W_{\text{fluct}}^{\text{MC0}} < 10^{-14}$.

Можно показать [16], что если в событии JF2af2 крайне высокая выстроенность 38 самых энергичных у-квантов также есть результат флуктуаций, то величина полной вероятности $W_{
m fluct}^{
m MC0}$ уменьшается более чем на пять порядков, т. е. до $W_{
m fluct}^{
m MC0} \lesssim 10^{-20}!$

Таким образом, объяснение эффекта выстроенности флуктуациями развития ЯЭК представляется практически невероятным.

Данные	Критерий отбора	Эксперимент		Расчет по МС0			
		$N_{\rm tot}^{\rm exp}$	$N_{\rm cop}^{\rm exp}$	$\langle N_{\rm cop}^{\rm MC0} \rangle$	$\sigma_{ m fluct}^{ m MC0}$	$\Delta \sigma_{ m fluct}^{ m MC0}$	$w_{ m fluct}^{ m MC0}$
1	2	3	4	5	6	7	8
«Памир» (Рb-РЭК)	$\lambda_4 \ge 0, 8$	14	6	1,0	1,0	5	$9,0 \cdot 10^{-5}$
«Памир» (С-РЭК)	$\lambda_4 \ge 0, 8$	35	9	2,1	1,5	4,6	$1,5\cdot 10^{-4}$
«Канбала»	$\lambda_3 \ge 0, 8$	6	3	1,2	1,2	1,5	$9,0\cdot 10^{-2}$
«Страна»	$\lambda_4 \ge 0,99$	1	1	-	0,05	_	$2,9 \cdot 10^{-3}$
JF2af2	$\lambda_4 \ge 0,998$	1	1	—	0,015	-	$6, 0 \cdot 10^{-4}$
Примечание. Колонки: 1 — экспериментальные наборы данных; 2 — критерий отбора выстроенных событий; 3 — полное число экспериментальных событий N_{tot}^{\exp} ; 4 — число экспериментальных выстро-							

Экспериментальные и расчетные данные

Примечание. Колонки: 1 — экспериментальные наборы данных; 2 — критерий отбора выстроенных событий; 3 — полное число экспериментальных событий $N_{\rm tot}^{\rm exp}$; 4 — число экспериментальных выстроенных событий $N_{\rm cop}^{\rm exp}$; 5 — ожидаемое число выстроенных событий $\langle N_{\rm cop}^{\rm MC0} \rangle$; 6 — расчетное стандартное отклонение $\sigma_{\rm fluct}^{\rm MC0}$; 7 — отклонение $\Delta \sigma_{\rm fluct}^{\rm MC0}$ для $N_{\rm cop}^{\rm exp}$ от ожидаемого значения $\langle N_{\rm cop}^{\rm MC0} \rangle$ (в единицах $\sigma_{\rm fluct}^{\rm MC0}$); 8 — вероятность $w_{\rm fluct}^{\rm MC0}$ наблюдения $N_{\rm cop}^{\rm exp}$ в результате флуктуаций.

Отметим, что два фактора, влияющие на азимутальные характеристики семейств (магнитное поле Земли и экстремальные электрические поля в грозовых облаках), не могут реально изменить степень выстроенности семейств на уровне гор [16].

4. ВЫСТРОЕННОСТЬ И ВЗАИМОДЕЙСТВИЯ АДРОНОВ

4.1. Теоретический подход. Если забыть о «новой» физике, то пути теоретического подхода к феномену компланарности можно условно разделить на две группы. В первой группе рассматриваются процессы передачи большого поперечного импульса (например, генерация глюонных струй [10]). Но КХД не дает объяснения феномену, поскольку из-за высокого порога РЭК видят в л.с. только одну КХД-струю, образующую на мишенной плоскости отдельный кластер из-за корреляции между поперечными и продольными импульсами частиц ($p_{t\,i} \propto p_{L\,i}$), но выстроенности частиц не наблюдается (рис. 3, *a*). Две КХД струи, рожденные в с. ц. м. при $\theta_1^* \approx \theta_2^* \approx 90^\circ$, вместе с лидирующей струей могут образовать компланарную систему. Однако расчеты [17] на основе генератора РҮТНІА показывают, что заметная доля выстроенных тройных событий в л.с. может быть получена только при очень высоких энергиях ($\sqrt{s} \gtrsim 14$ ТэВ) и очень высоких поперечных импульсах струй ($P_{t\,jet} \gtrsim 0.2\sqrt{s/c}$, т. е. $P_{t\,jet} \gtrsim 3$ ТэВ/*c* при энергиях LHC).

В модели полужесткой двойной дифракционной неупругой диссоциации (SHDID) [11] выстроенность есть результат натяжения и разрыва кварк-глюонной струны в дифракционном кластере между полужестко рассеянным кварком-конституентом и кваркамиспектаторами (рис. 3, δ). В этой модели имеет место антикорреляция между $p_{t\,i}$ и $p_{L\,i}$: вторичные частицы с меньшими энергиями имеют бо́льшие поперечные импульсы. Это дает возможность наблюдать выстроенность. Однако сечение процесса, необходимое для описания экспериментальных данных, возможно, не обеспечивается.

Модели [12–14] изучают причины появления системы с очень высоким спином, распадающейся компланарно, в частности: генерацию лидирующего тяжелого резонанса [12,14] (рис. 3, *в*); сохранение углового момента при рождении релятивистской кварк-глюонной

Рис. 3. Возможные типы взаимодействий с нарушением азимутальной симметрии в с. ц. м. и л. с.: *a*) КХД; *б*) SHDID; *в*) рождение лидирующей системы с высоким спином; *г*) сохранение углового момента при рождении кварк-глюонной струны

струны, натянутой между сталкивающимися адронами и вращающейся с угловой скоростью порядка $\omega \sim (c/b)(\sqrt{s}/M)$, где b — прицельный параметр и M — масса струны [13] (рис. 3, c). В [13] компланарная генерации частиц появляется в л. с. как кинематический эффект с сечением, сравнимым, возможно, с обычным неупругим. В этом случае также имеет место необходимая антикорреляция $p_{t\,i}$ и $p_{L\,i}$. Характеристики вторичных частиц в моделях [11–13] (например, относительное положение самой энергичной частицы или множественность) могут отличаться.

4.2. Анализ экспериментальных и расчетных результатов. Был проведен анализ данных сотрудничества «Памир» и искусственных γ -h-семейств, полученных в рамках МС0 и МКГЧ.

Рис. 4 показывает зависимость доли выстроенных событий $F_{\rm cop}^{\rm MK\Gamma q}$ от расстояния Δx ($\mathbf{r} \cdot \mathbf{cm}^{-2}$) между точкой КГЧ взаимодействия и уровнем наблюдения при $Z_c = 0$, 1 и 20 ТэВ · см. Горизонтальной линией отмечен флуктационный фон, полученный по МСО. Очевидно, доля выстроенных событий быстро падает от единицы до уровня фона. Отсюда следует очень важный вывод: если на уровне гор ($\Delta x \sim 600 \, \mathbf{r} \cdot \mathbf{cm}^{-2}$) $F_{\rm cop}^{\rm exp} \ge 0, 2$, то сечение КГЧ-процессов, инициируемых протонами, должно быть сравнимо с неупругим сечением, т. е. $\sigma_{\rm cop}^{p-{\rm air}} \sim \sigma_{\rm inel}^{p-{\rm air}}$. Наконец, $F_{\rm cop}^{\rm exp}$ зависит от Z_c (коррелирующего с поперечным импульсом). Это подтверждает рис. 5, который показывает для γ -семейств зависимость $F_{\rm cop}^{\rm exp}$ от Z_c (с максимумом при $Z_c \simeq 4$ ТэВ · см) [19]. Расчетные точки МКГЧ качественно согласуются с экспериментом.

Из рис. 6 видно, что экспериментальные значения $F_{\text{cop 4}}^{\text{exp}}$ [18] растут с энергией семейств $\sum E_{\gamma}$, что воспроизводится в рамках МКГЧ и отличается от результатов МСО.

О выстроенности наиболее энергичных структур гамма-адронных семейств 31

Рис. 4. Зависимость $F_{\text{сор 4}}^{\text{МКГЧ}}$ от расстояния Δx от точки КГЧ-взаимодействия до уровня наблюдения. Значки соответствуют $Z_c = 20$ (\Diamond), 1 (Δ) и 0 (\Box) ТэВ · см. Пунктирные линии — экстраполяции. Горизонтальная линия — флуктуационный фон

Рис. 5. Зависимость $F_{cop \ 4}$ от Z_c . \triangle — эксперимент [19]; • — МСО; \Box — МКГЧ

На рис. 7 показаны зависимости от $\sum E_{\gamma}$ отношений дважды усредненных¹ значений $\langle \overline{ER} \rangle$ и $\langle \overline{R} \rangle^2$ для выстроенных семейств к аналогичным значениям невыстроенных событий, полученные с использованием экспериментальных данных [18], МСО и МКГЧ: $\varepsilon = \langle \overline{ER} \rangle (\lambda_4 \ge 0.8) / \langle \overline{ER} \rangle (\lambda_4 < 0.8)$ (рис. 7, *a*) и $\rho = \langle \overline{R} \rangle (\lambda_4 \ge 0.8) / \langle \overline{R} \rangle (\lambda_4 < 0.8)$ (рис. 7, *b*).

Можно видеть принципиально разное поведение ε при наличии ($\varepsilon > 1$) и отсутствии ($\varepsilon < 1$) КГЧ-процесса. Для ρ эта тенденция гораздо слабее. С другой стороны, как раз

¹На первом этапе проводится усреднение по характеристикам четырех ЭВЦ в каждом из событий. На втором этапе найденные значения усредняются по всем семействам.

²Здесь Е и R — энергии ЭВЦ и их расстояние до центра семейства.

Рис. 6. Энергетическая зависимость $F_{\text{сор 4}}$ для γ -*h*-семейств. Эксперимент [18]: \blacktriangle — отбор по $\sum E_{\gamma}$; \bigtriangleup — отбор по $N_{\text{ЭВЦ}} \ge 6, E_{\text{ЭВЦ}} \ge 50$ ТэВ. Расчет: \bullet — МСО; \Box — МКГЧ

Рис. 7. Зависимость ε (*a*) и ρ (*b*) от $\sum E_{\gamma}$ для γ -семейств. \Diamond — эксперимент [18]; • — MC0; \Box — МКГЧ

экспериментальное значение ρ сильно превышает даже предсказания МКГЧ. Это очень интересно, поскольку $\langle \overline{ER} \rangle$ и $\langle \overline{R} \rangle$ коррелируют с величиной поперечного импульса в сильных взаимодействиях.

4.3. О поисках компланарной генерации частиц. Информацию о взаимодействиях при энергиях $E_0 \gtrsim 10^{15}$ эВ несут группы мюонов высоких энергий и ШАЛ. Однако расчеты [16] показывают, что азимутальные характеристики групп мюонов вообще не чувствительны к процессу КГЧ, поскольку вероятность распада мезонов высоких энергий ничтожна в любом случае. Расчеты для ШАЛ [16] показывают, что основные эффекты, связанные с процессом КГЧ, сосредоточены в центральной области каскада ($R \leq 10$ см), которая практически не исследуется в экспериментах с ШАЛ. Кроме того, эффекты, связанные с тяжелыми первичными ядрами, гораздо сильнее (использование более точных моделей, возможно, изменит ситуацию).

Компланарная генерация частиц могла бы исследоваться на LHC путем анализа энерговыделения в ячейках пространства ($\eta \times \phi$)-калориметров в детекторах CMS и ATLAS, при энергиях до $\sqrt{s} \simeq 14$ ТэВ, что гораздо выше эффективных энергий вза-имодействий, $\sqrt{s_{\rm eff}^{\rm cop}} \gtrsim 4$ ТэВ, отвечающих за выстроенные события. Хотя для де-

текторов CDF и D0 $\sqrt{s} < \sqrt{s_{\text{eff}}^{\text{cop}}}$, высокая точность экспериментов могла бы помочь заметить первые признаки КГЧ и в этом случае. Основной проблемой является связь компланарности с самыми энергичными частицами, плохо наблюдаемыми на коллайдерах при высоких значениях η . Довольно произвольно полагая, что $\langle p_T^{\text{cop}} \rangle \sim 5 \ \Gamma$ эB/c и $K_{\text{inel}} \sim 0.5$, различие в энергиях частиц не превышает одного порядка величины, и, наконец, что низкоэнергичные частицы имеют бо́льшие поперечные импульсы, мы можем оценить нижнюю границу области псевдобыстрот компланарных частиц как $\eta_{\min} \sim -\ln\{\langle p_T^{\text{cop}} \rangle / [0.5\sqrt{s}(1-K_{\text{inel}})/10]\}$, т.е. $\eta_{\min} \sim 2.2$ и ~ 4.2 для $\sqrt{s} \simeq 1.8$ и 14 ТэВ соответственно. Сценарии [11,12,14] (рис. 3, δ , δ) характеризуются низкой множественностью в одной из полусфер. Модель [13] (рис. 3, ϵ) характеризуется обычной множественностью частиц и компланарностью в обеих полусферах.

Все вышеприведенные оценки предельно грубы. Для изучения феномена компланарной генерации частиц как на коллайдерах, так и в космических лучах требуются гораздо более развитые модели.

ЗАКЛЮЧЕНИЕ

Экспериментальные данные по выстроенности γ -*h*-семейств позволяют сделать следующие выводы только о самых общих свойствах взаимодействий адронов.

1. Явление выстроенности не может быть объяснено в рамках современных версий моделей кварк-глюонных струн без привлечения процесса компланарной генерации частиц с большими поперечными импульсами, проявляющегося при $\sqrt{s} \ge 4$ ТэВ.

2. Если этот процесс идет через взаимодействия протонов, то его сечение должно быть сравнимым с полным неупругим сечением при этих энергиях. В противном случае относительная интенсивность выстроенных событий, наблюдаемая на уровне гор ($\gtrsim 20$ %), упадет до фонового значения.

3. Процесс может быть наглядно описан или гипотезой полужесткой дифракционной неупругой диссоциации [11], или в рамках предположения об образовании промежуточного адронного состояния с очень высоким спином [12–14]. При этом идеи [13] не выходят за рамки современных представлений.

Работа поддерживается РФФИ (гранты 03-02-17465, 04-02-17083, 05-02-16781, 05-02-17599) и Министерством образования и науки (грант ШВУ-1782.2003.2).

СПИСОК ЛИТЕРАТУРЫ

- 1. Кайдалов А. Б., Тер-Мартиросян К.А. Множественное рождение адронов при высоких энергиях в модели кварк-глюонных струн. Теория // ЯФ. 1984. Т. 39, вып. 6. С. 1545–1558.
- 2. *Shabelsky Yu. M.* Inclusive spectra of secondaries produced on nuclear targets at superhigh energies and with violation of Feynman scaling // Z. Phys. C. 1988. V. 38, No. 4. P. 569–578.
- 3. Калмыков Н. Н., Остапченко С. С. Модель КГС с учетом струй и ШАЛ // ЯФ. 1994. Т. 58, вып. 12. С. 21–24.

- 4. Иваненко И. П. и др. Выстроенность в гамма-адронных семействах космических лучей и характеристики взаимодействий при $E_0 \sim 10^{16}$ эВ // Письма в ЖЭТФ. 1992. Т. 50, вып. 11. С. 192–196.
- 5. Kopenkin V. V. et al. Alignment in γ -hadron families of cosmic rays // Phys. Rev. D. 1995. V. 52, No. 5. P. 2766–2774.
- 6. *Pamir Collab.* Alignment of cores distinguished for energies in superfamilies. Preprint INP MSU 89-67/144. M., 1989.
- 7. Xue L. et al. Study on alignment of high energy γ -hadron family events with iron emulsion chambers // Proc. of the 26th ICRC, Salt Lake City, USA, 1999. V. 1. P. 127–130.
- 8. *Манагадзе А.К. и др.* Компланарный разлет частиц в ядерном взаимодействии при E₀ > 10¹⁶ эВ, зарегистрированном в стратосфере // Письма в ЭЧАЯ. 2002. № 3[112]. С. 19–24.
- Capdevielle J. N. Analysis of one cosmic ray collision near 10⁷ GeV // J. Phys. G. 1988. V. 14. P. 503–511.
- 10. Halzen F., Morris D.A. Coplanar jets // Phys. Rev. D. 1990. V.42, No. 5. P. 1435-1438.
- 11. Royzen I. I. Theoretical approach to alignment phenomenon // Mod. Phys. Lett. A. 1994. V.9, No. 38. P. 3517–3522.
- 12. Yuldashbaev T. S., Nuritdinov Kh., Chudakov V. M. Unusual family characteristics at energies above 10 PeV // Nuovo Cim. C. 2001. V. 24. P. 569–573.
- 13. Wibig T. Alignment in hadronic interactions. hep-ph/0003230.
- Mukhamedshin R.A. On a mechanism of coplanar generation of particles at superhigh energies // Nucl. Phys. B (Proc. Suppl.). 1999. V.75A. P. 141–144.
- 15. Borisov A. S. et al. Coplanar emission of high energy particles in super-families with total γ -ray energy exceeding 400 TeV // Proc. of the 8th ISVHECRI, Tokyo, 1994. P.49–56.
- 16. *Mukhamedshin R.A.* On coplanarity of most energetic cores in gamma-ray-hadron families and hadron interactions at $\sqrt{s} \gtrsim 4$ TeV // J. High Energy Phys. 2005. V.05. P.049.
- 17. Lokhtin I. P. et al. Jet activity versus alignment. hep-ph/0502230.
- Borisov A. S. et al. On the nature of gamma-hadron family alignment // Nucl. Phys. B (Proc. Suppl.). 2001. V. 97. P. 118–121.
- 19. Borisov A. S. et al. Characteristics of coplanar superhigh energy events produced in nuclear interactions at $E_0 \ge 8$ PeV // Nucl. Phys. B (Proc. Suppl.). 1999. V. 75A. P. 144–147.

Получено 4 февраля 2005 г.