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ON RADIATIVE CORRECTIONS FOR UNPOLARIZED
ELECTRONÄPROTON ELASTIC SCATTERING

E. Tomasi-Gustafsson

DAPNIA/SPhN, CEA/Saclay, Gif-sur-Yvette Cedex, France

A statistical analysis of the elastic unpolarized electronÄproton scattering data shows that at large
momentum transfer the size and the ε dependence of the radiative corrections, as traditionally calculated
and applied, may induce large correlations of the parameters of the Rosenbluth ˇt, which prevent a
correct extraction of the electric proton form factor. Using the electron QED structure (radiation)
function approach the cross section of elastic electronÄproton scattering in leading and next-to-leading
approximations is calculated and expressed as a correction to the Born cross section, which is different
for the electric and magnetic contributions. When properly applied to the data, it may give the solution
to the problem of the discrepancy of the polarized and unpolarized results on electronÄproton scattering.
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INTRODUCTION

The experimental determination of the elastic proton electromagnetic form factors (FFs) at
large momentum transfer is presently of large interest due to the availability of electron beams
in the GeV range with high intensity and high polarization, large acceptance spectrometers,
hadron polarized targets, and hadron polarimeters. The possibility of extending the measure-
ments of such fundamental quantities, which contain dynamical information on the nucleon
structure, has inspired experimental programs at JLab, Frascati and at future machines, such
as GSI, both in the space-like and in the time-like regions.

The traditional way to measure proton electromagnetic FFs consists in the determination
of the ε dependence of the reduced elastic differential cross section, which may be written
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assuming that the interaction occurs through the exchange of one-photon, as [1]

σBorn
red (θ, Q2) = ε(1 + τ)

[
1 + 2

E

m
sin2(θ/2)

]
4E2 sin4(θ/2)
α2 cos2(θ/2)

dσ

dΩ
= τG2

M (Q2) + εG2
E(Q2),

(1)
ε = [1 + 2(1 + τ) tan2(θ/2)]−1,

where α = 1/137; τ = Q2/(4m2); Q2 is the momentum transfer squared; m is the proton
mass; E and θ are the incident electron energy and the scattering angle of the outgoing
electron, respectively, and GM (Q2) and GE(Q2) are the magnetic and the electric proton
FFs and are functions of Q2, only. Measurements of the elastic differential cross section at
different angles for a ˇxed value of Q2 allow GE(Q2) and GM (Q2) to be determined as the
slope and the intercept, respectively, from the linear ε dependence (1).

High precision data on the ratio of the electric-to-magnetic proton FFs at large Q2 have
been recently obtained [2] through the polarization transfer method [3]. Such data revealed
a surprising trend, which deviates from the expected scaling behavior previously obtained
through the measurement of the elastic ep cross section according to the Rosenbluth separation
method [4]. New precise measurements of the unpolarized elastic ep cross section [5] and
reanalysis of the old data [6, 7] conˇrm that the behaviour of the measured ratio R(Q2) =
μGE(Q2)/GM (Q2) (μ = 2.79 is the magnetic moment of the proton) is different depending
on the method used:

• Scaling behavior for unpolarized cross section measurements: R(Q2) � 1; GM (Q2) has
been extracted up to Q2 � 31 GeV2 [8] and is often approximated, for practical purposes,
according to a dipole form: GD(Q2) = (1 + Q2/0.71 GeV2)−2;

• A strong monotonical decrease from polarization transfer measurements:

R(Q2) = 1 − (0.130 ± 0.005){Q2 [GeV2] − (0.04 ± 0.09)}. (2)

The ratio deviates from unity as Q2 increases reaching a value of � 0.35 at Q2 =
5 GeV2 [2].

This puzzle has given rise to many speculations and different interpretations [9Ä11],
suggesting further experiments. In particular, it has been suggested that the presence of
2γ exchange could solve this discrepancy through its interference with the main mechanism
(1γ exchange). In the previous paper [12] it was shown that the present data do not give
any evidence of the presence of the 2γ mechanism in the limit of the experimental errors.
The main reason is that, if one takes into account C-invariance and crossing symmetry,
the 2γ mechanism introduces a very speciˇc non-linear ε dependence of the reduced cross
section [13Ä15], whereas the data do not show any deviation from linearity.

Before analyzing the data in a different perspective, we stress the following points:
• No experimental bias has been found in both types of measurements, the experimental

observables being the differential cross section on the one hand, and the polarization of the
outgoing proton in the scattering plane (more precisely the ratio between the longitudinal and
the transverse polarization) on the other hand.

• The discrepancy is not at the level of these observables: it has been shown that
constraining the ratio R from polarization measurements and extracting GM (Q2) from the
measured cross section ®the magnetic FF is systematically 1.5Ä3% larger than had been
extracted in previous analysis¯, inside the error bars [16].
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• The inconsistency arises at the level of the slope of the ε dependence of the reduced
cross section, which is directly related to GE(Q2), i.e., the derivative of the differential cross
section, with respect to ε. The difference of such a slope, derived from the two methods
above, appears particularly in the latest precise data [5]. One should note that the discrepancy
appears in the ratio R, whereas GM (Q2) decreases more than one order of magnitude from
Q2 = 1 to 5 GeV2.

Radiative corrections to the unpolarized cross section can reach 30Ä40% at large Q2. The
RC are calculated as a global factor which is applied to the number of detected elastic events,
σmeas. As a rule, they depend on the kinematical variables as ε and Q2. They are traditionally
applied to the unpolarized differential cross section, following a prescription which includes
only leading order contributions [17,26]:

δ � −2α

π

{
ln

ΔE

E

[
ln

(
− q2

m2

)
− 1

]
+

3
4

ln
(
− q2

m2

)
+ f(θ)

}
, (3)

where f(θ) is function only of the scattering angle θ.
As noted in the original papers [17, 26], when ΔE → 0, σmeas becomes negatively inˇ-

nite, whereas physical arguments require that it should vanish. The authors already stated that
this problem would be overcome taking into account higher order radiative corrections.

In recent experiments, E is large and the experimental resolution is very good (allowing
one to reduce ΔE). Moreover, multiple photon emission from the initial electron shifts the
momentum transferred to the proton to lower values increasing the cross section. Therefore,
δ becomes sizeable and one cannot safely neglect higher order corrections.

A complete calculation of radiative corrections should take into account consistently all
different terms which contribute at all orders (including the two-photon exchange contribution)
and their interference.

However, several approximations are made, which may not be safely extrapolated to the
conditions of the present experiments. In particular, in the calculation of Ref. [17], the
consideration of hard collinear photon emission (where the radiative photon is emitted along
the direction of the incident or outgoing electron) is not complete. Moreover, higher order
RC, pair production as well as vacuum polarization, are not included.

We calculate here the cross section of elastic electronÄproton scattering in leading and
next-to-leading approximations using the electron QED structure (radiation) function approach,
which takes into account any number of real and virtual photons, emitted in collinear kine-
matics, at all orders in QED. This approach was previously applied to unpolarized e+e− scat-
tering [18], to deep inelastic scattering [19] and, more recently, to polarization observables in
ep elastic scattering [20,21]. It was found that the correction is lower than 1% to polarization
observables, as expected. However, the effect on the polarized cross section was not investi-
gated, and, in particular, the effect on the slope of the reduced cross section as a function of
ε, which is the relevant quantity here.

The purpose of this paper is to reanalyze the unpolarized data, with particular attention to
the applied RC.

The paper is organized as follows. In Sec. 1 we show that a large correlation exists
between the two parameters extracted from the Rosenbluth ˇt at large Q2 and analyze the
existing data in this respect. A probable source of these correlations being found in the
standard procedure taken for RC, we calculate RC for the cross section of elastic electronÄ
proton scattering in the framework of the structure functions (SF) approach (Sec. 2). In Sec. 3



On Radiative Corrections for Unpolarized ElectronÄProton Elastic Scattering 483

Fig. 1. Dependence of G2
E/G2

D versus G2
M/μ2G2

D : a) for Q2 � 2 GeV2 from Ref. [5] (triangles),
[6] (stars) and [22] (squares); b) for Q2 � 2 GeV2 from Ref. [23] (circles), and [24] (squares)

numerical results are presented, which show that the correction to the measured cross section
is different for the electric and magnetic contributions, and therefore affects the slope of the
reduced cross section and, in particular, the extraction of GE(Q2).

1. STATISTICAL ANALYSIS OF THE PRESENT DATA

The starting point of this work is the observation of a correlation, which appears in the
published FFs data extracted with the Rosenbluth method: the larger is G2

E , the smaller is
G2

M . The dependence of G2
E/G2

D versus G2
M/μ2G2

D is shown in Fig. 1, a for three recent
data sets, at Q2 � 2 GeV2 [5, 6, 22]. In Fig. 1, b two data sets at low Q2 (Q2 � 2 GeV2)
are shown [23, 24]. Whereas at low Q2, G2

E/G2
D seems constant and quite independent of

G2
M/μ2G2

D , at large Q2 an evident correlation appears. This is especially visible in the most
recent and precise experiment, at large Q2 [5], where a linear ˇt of the ratio R(Q2) as a
function of Q2 gives

R(Q2) = (0.13 ± 0.11){Q2 [GeV2] + (0.57 ± 0.32)}, (4)

where Q2 is expressed in GeV2.
Polarization data also showed a linearity of the ratio R, with the same slope (in absolute

value), Eq. (2), but with opposite sign. In this case, the ratio is measured directly, whereas,
according to the Rosenbluth method, one extracts two (independent) parameters from a linear
ˇt. A correlation between the two parameters could be induced by the procedure itself or
could be a physical effect and have a dynamical origin. In the latter case, it should not depend
on the experiment.

It is known that at large Q2 the contribution of the electric term to the cross section
becomes very small, as the magnetic part is ampliˇed by the kinematical factor τ . This is
illustrated in Fig. 2, where the ratio of the electric part, FE = εG2

E(Q2), to the reduced cross
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section is shown as a function of Q2. The different curves correspond to different values of
ε, assuming FFs scaling (thin lines) or in the hypothesis of the linear dependence of Eq. (2)
(thick lines). In the second case, one can see that, for example, for ε = 0.2 the electric
contribution becomes lower than 3% starting from 2 GeV2. This number should be compared
with the absolute uncertainty of the cross-section measurement. When this contribution is
larger or is of the same order, the sensitivity of the measurement to the electric term is lost
and the extraction of GE(Q2) becomes meaningless.

Fig. 2. Contribution of the GE(Q2)-dependent term to the reduced cross section (in percent) for ε = 0.2

(solid line), ε = 0.5 (dashed line), ε = 0.8 (dash-dotted line), in the hypothesis of FFs scaling (thin
lines) or following Eq. (2) (thick lines)

Since the ˇrst measurements [25], electromagnetic probes have been traditionally preferred
to hadronic beams, as the electromagnetic interaction is exactly calculable in QED, and one
can safely extract the information from the hadronic vertex. However, one has to introduce
the radiative corrections, which become very large as the momentum transfer squared, Q2,
increases. Radiative corrections were ˇrst calculated by Schwinger [26] and are important for
the discussion of the experimental determination of the differential cross section.

The measured elastic cross section is corrected by a global factor CR, according to the
prescription [17]:

σBorn
red = CRσmeas

red . (5)

The factor CR contains a large ε dependence and a smooth Q2 dependence, and it is common
to the electric and magnetic parts. At the largest Q2 considered here this factor can reach
30Ä40%, getting larger when the resolution is higher. If one made a linear approximation for
the uncorrected data, one might even ˇnd a negative slope starting from Q2 � 3 GeV2 [12].
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In Fig. 3 we show the CR dependence on ε for different Q2 and from different sets of
data. One can see that CR increases with ε, rising very fast as ε → 1. It may be different
in different experiments because its calculation requires an integration over the experimental
acceptance.

The Rosenbluth separation consists of a linear ˇt to the reduced cross section at ˇxed Q2,
where the two parameters are G2

E and G2
M . The multiplication by a factor, which is common

to the electric and magnetic terms (see Eqs. (1), (5)), depends strongly on ε and induces a
correlation between these two parameters. In order to determine quantitatively how large this
correlation is, we have built the error matrix for the Rosenbluth ˇts to the different sets of
data available in the literature.

Fig. 3. Radiative correction factor applied to

the data at Q2 = 3 GeV2 (squares) from
Ref. [22], at Q2 = 4 GeV2 (triangles) and

5 GeV2 (reversed triangles) from Ref. [4], and

at Q2 = 0.32 GeV2 (circles) from Ref. [24].
The lines are drawn to guide the eye

Fig. 4. Correlation coefˇcient, ξ, as a function
of the radiative correction factor 〈CR〉, ave-

raged over ε, for different sets of data: from

Ref. [24] (circles), from Ref. [4] (triangles) and
from Ref. [22] (squares)

At ˇxed Q2 the reduced cross section, normalized to G2
D, has been parametrized by a

linear ε dependence: σBorn
red /G2

D = aε+b. The two parameters, a and b, have been determined
for each set of data as well as their errors σa, σb and the covariance, cov (a, b). The correlation
coefˇcient ξ is deˇned as ξ = cov (a, b)/σaσb and is shown in Fig. 4 as a function of the
average of the radiative correction factor 〈CR〉, weighted over ε.

As the radiative corrections become larger, the correlation between the two parameters
also becomes larger, reaching values near its maximum (in absolute value). Full correlation
means that the two parameters are related through a constraint, i.e., it is possible to ˇnd a
one-parameter description of the data. The data shown in Fig. 4 correspond to those sets of
experiments where the necessary information on the radiative corrections is available. The
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correlation coefˇcient itself can be calculated for a larger number of data and it is reported
in the table.

Correlation coefˇcient ξ = cov (a, b)/σaσb for different sets of data

Q2, GeV ξ Ref. Q2, GeV ξ Ref.

2.6400 Ä0.8823 [5] 0.2717 Ä0.7258 [24]
3.2000 Ä0.8973 0.2911 Ä0.7818
4.1000 Ä0.9060 0.3105 Ä0.7085
1.7500 Ä0.8693 [4] 0.3493 Ä0.7683
2.5000 Ä0.9141 0.3881 Ä0.7417
3.2500 Ä0.9242 0.4269 Ä0.7093
4.0000 Ä0.9178 0.4657 Ä0.7381
5.0000 Ä0.8940 0.5045 Ä0.8126
1.0000 Ä0.9918 [22] 0.5433 Ä0.7646
2.0030 Ä0.9915 0.5821 Ä0.8076
2.4970 Ä0.9910 0.6209 Ä0.8061
3.0070 Ä0.9878 0.6598 Ä0.8137
0.1552 Ä0.6761 [24] 0.6986 Ä0.8713
0.1785 Ä0.6788 0.7374 Ä0.8145
0.1940 Ä0.6915 0.7762 Ä0.8512
0.2329 Ä0.7177 0.8538 Ä0.7612

At low Q2 a correlation still exists, but it is smaller. For the data from Ref. [24] the
radiative corrections are of the order of 15%, seldom exceed 25% and correspond to ε < 0.8.
This allows a safer extraction of the FFs.

Figure 4 shows that, for each Q2, the extraction of FFs by a two-parameter ˇt may be
biased by the ε dependence induced by the radiative corrections. Whatever the precision
of the individual measurements is, the slope of the reduced cross section is not sensitive to
GE(Q2) at large Q2. The Q2 dependence is therefore driven by GM (Q2), which follows
a dipole form. For each Q2 a nonzero value of the ratio R will lead to an apparent dipole
dependence of GE(Q2). Therefore, experiments based on this method, will always give a
Q2 dependence of GE(Q2) which is driven by GM (Q2), i.e., follows approximately a dipole
behavior.

2. CALCULATION OF RADIATIVE CORRECTIONS

It is known [19] that the process of emission of hard photons by initial and scattered elec-
trons plays a crucial role, which results in the presence of the radiative tail in the distribution
on the scattered electron energy. We give here a simpliˇed example of how different calcula-
tions of radiative corrections can affect the electric and magnetic parts of the unpolarized cross
section, and change, in particular, its ε dependence. The main point of interest here is to show
the very sharp dependence of the initial state emission on the inelastic tail of the scattered
electron energy spectrum. A more extended version of this calculation and its application to
polarization observables, including two-photon exchange, is given elsewhere [28].
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The aim of this paper is to drive the attention to the sensitivity of the electric FF to the
procedure used for its extraction from the data, and to focus the attention on how radiative
corrections are applied to the unpolarized cross section.

The structure functions (SF) approach extends the traditional one [17], taking precisely
into account the contributions of higher orders of perturbation theory and the role of initial
state photon emission. The cross section is expressed in terms of SF of the initial electron
and of the fragmentation function of the scattered electron energy fraction. Experimentally,
the detection of the scattered electron does not allow one to separate the collinear photon
emission. Therefore, one integrates in a range of the scattered electron energy. This is
equivalent to set the fragmentation function to unity, due to the well-known properties of this
formalism [19].

It is known that initial state photon emission is more important than ˇnal state photon
emission, due to the effect of decreasing Q2. Proton emission (real and virtual) is essentially
smaller than the electron ones, and can be included as a general normalization. Vacuum
polarization, which has been often neglected in the previous analysis, here is taken into
account.

The four-momentum transfer squared can be written as

Q2 =
2E2(1 − cos θ)

ρ
,

where ρ is the recoil factor

ρ = 1 +
E

M
(1 − cos θ).

In an experiment, the selection of elastic scattering requires the integration of the events in
the elastic peak, and the rejection of inelastic events. We parametrize the cut on the energy
of the ˇnal electron E′, selecting events with E′ > c/ρ, where c is the ®inelasticity¯ cut,
c < 1 (for the present numerical application we choose c = 0.97).

Due to the properties of SF method, radiative corrections can be written in the form of
initial and ˇnal state emission, although gauge invariance is conserved. This form obeys the
LeeÄNauenbergÄKinoshita theorem about the cancellation of mass singularities integrating on
the the ˇnal energy fraction. This results in omitting the ˇnal (fragmentation) SF, i.e., in
replacing the structure function associated with the ˇnal electron emission by unity.

Therefore, the differential cross section, calculated in the framework of the SF method,
dσSF/dΩ, can be written as [27]

dσSF

dΩ
=

α2 cos2(θ/2)
4E2 sin4(θ/2)

1∫
z0

dzD(z)
φ(z)

[1 − Π(Q2
z)]2

(
1 +

α

π
K

)
, (6)

where K is an ε-independent quantity of the order of unity, which includes all the non-leading
terms, as two-photon exchange and soft photon emission. More precisely, the interference
between the two virtual photons exchange amplitude and the Born amplitude and the relevant
part of the soft photon emission, i.e., the interference between the electron and proton soft
photon emission, is included in the term K . This effect is not enhanced by large logarithm

(charcteristic of SF) and can be included in non-leading contributions. The factor 1 +
α

π
K

can be considered as a general normalization. It is calculated in detail in Ref. [28].



488 Tomasi-Gustafsson E.

Here we focus on the ε dependence of the differential cross section. The SF calculation,
Eq. (1), can be expressed in the form of a correction of the Born reduced cross section (we
omit RC of higher order):

σSF
red = σBorn

red (1 + ΔSF) (7)

with

ΔSF =
α

π

{
2
3

(
L − 5

3

)
− 1

2
(L − 1)

[
2 ln

(
1

1 − z0

)
− z0 −

z2
0

2

]
+

1
2
ρ(1 + τ)(L − 1)

1∫
z0

(1 + z2)dz

1 − z

[
φ(z)

[1 − Π(z)]2
− φ(1)

[1 − Π(1])2

]⎫⎬
⎭ , L = ln

Q2

m2
e

, (8)

me is the electron mass. The structure (radiation) function D(z) is

D(z) =
β

2

[(
1 +

3
8
β

)
(1 − z)

β
2 −1 − 1

2
(1 + z)

]
+ O(β2), β =

2α

π

[
ln

Q2

m2
e

− 1
]

. (9)

The lower limit of integration, z0, is related to the ®inelasticity¯ cut, c, necessary to select
the elastic data:

z0 =
c

ρ − c(ρ − 1)
. (10)

The transfer momentum and recoil factor of the scattered electron after the collinear photon
emission are, respectively, Qz and ρz:

Q2
z = 2E2z2(1 − cos θ)/ρz ; ρz = 1 + z

E

M
(1 − cos θ). (11)

The kinematically corrected Born cross section for the scattered electron, φ(z), is

φ(z) =
1

εzz2ρz(1 + τz)
σred(z), σred(z) = τzG

2
M (Q2

z) + εzG
2
E(Q2

z), (12)

with

τz =
Q2

z

4M2
,

1
εz

= 1 + 2(1 + τz) tan2(θ/2). (13)

The vacuum polarization for a virtual photon with momentum q, q2 = −Q2 < 0, is included
as a factor 1/[1− Π(Q2)]. The main contribution to this term arises from the polarization of
electronÄpositron vacuum:

Π(Q2) =
α

3π

[
L − 5

3

]
. (14)

The calculation requires a speciˇc procedure for the integration of the SF, D(z), which
has a singularity at the upper limit of integration, Eq. (6).

The dependence of SF reduced cross section, Eqs. (7)Ä(14), on ε is shown in Fig. 5, aÄc
for different values of Q2 = 1, 3, 5 GeV2 (solid lines). For comparison, the corresponding
Born reduced cross section, assuming also FFs parametrized in dipole form, is shown by
a dashed line, and the Born cross section, with FFs parametrized according to polarization
measurements, (Eq. (2)), by a dash-dotted line.
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Fig. 5. Reduced cross section for ep elastic scattering as a function of ε, for c = 0.97 at Q2 = 1 GeV2

(a), 3 and 5 GeV2 (b). The SF cross section, Eq. (7) (solid line) and the Born cross section, Eq. (1)

(dashed line) are shown for dipole parametrization of FFs. The absolute value of the correction, |ΔSF|,
is shown in d for Q2 = 1 GeV2 (solid line), 3 GeV2 (dotted line), and 5 GeV2 (dash-dotted line). For

comparison, the calculation of the Born cross section with FFs parametrized according to [16] is shown
by dash-dotted lines, in a, b and c

One can see that SF corrections affect the ε dependence of the cross section. Such an
effect is more important as Q2 increases and for large ε values. The relative difference of the
SF reduced cross section with respect to the Born reduced cross section (both assuming dipole
FFs), |ΔSF|, is shown in Fig. 5, d. For large values of ε, the calculated reduced cross section
can differ from the Born one by more than 7%, for c = 0.97. As both calculations assume
dipole FFs, the source of the difference has to be attributed to how radiative corrections are
calculated and applied.

Let us stress that the main effect of this correction is to modify and to lower the slope of
the reduced cross section. This effect brings into qualitative and quantitative agreement FFs
data issued from polarized and unpolarized measurements, as one can see from the comparison
of the solid and dash-dotted lines in Fig. 5, aÄc.

Of course, the concrete value of the slope depends on the ®inelasticity¯ cut. Taking
0.95 � c � 0.97, the slope given by the SF calculation is in complete agreement with the
slope suggested by the polarization measurements.
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CONCLUSIONS

We reanalyzed the Rosenbluth data with particular attention to the radiative corrections
applied to the measured cross section, and we showed from the (published) data that at large
Q2 statistical correlations between the parameters of the Rosenbluth plot become so large that
GE(Q2) cannot be safely extracted. The method itself is based on large momentum transfer
because RC are applied as a global factor, which is the same for the electric and magnetic
contributions. Such a factor contains a large ε dependence, which induces a strong correlation
in the parameters of the linear ε ˇt.

Calculations of RC in the framework of the SF method, which takes into account higher
order of perturbation theory, show that RC from collinear hard photon emission affect the
elastic ep cross section, in particular, its ε dependence. Similarly to the standard RC, they
depend on the electron scattering angle and on the kinematical selection for the elastic events.
On the opposite, they act differently on the electric and magnetic terms of the cross section,
changing the slope of the reduced cross section which is related to the electric FF. When
applied to the polarized cross section, it has been shown that their effect is small on the
relevant observables [20, 21]. Therefore, it is suggested here that such corrections, when
properly applied to the experimental data, can bring into agreement the results on the proton
FFs issued from unpolarized and polarized measurements. Moreover, these corrections affect
very little the linearity of the Rosenbluth ˇt, contrary to what is expected from two-photon
exchange [13].

A complete calculation should take into account consistently all different terms which
contribute at all orders (including the two-photon exchange contribution) and their inter-
ference [28].

We conˇrm the conclusion of the previous paper [3] which ˇrst suggested the polarization
method for the determination of GE(Q2), due to the increased sensitivity of the cross section
to the magnetic term at large Q2: ®Thus, there exist a number of polarization experiments
which are more effective for determining the proton charge FF than is the measurement of
the differential cross section for unpolarized particles¯.
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