МЕТОДИКА ФИЗИЧЕСКОГО ЭКСПЕРИМЕНТА

ФИЗИЧЕСКОЕ ОБОСНОВАНИЕ ЛИТИЕВОГО ЭКСПЕРИМЕНТА

А. В. Копылов, И. В. Орехов, В. В. Петухов, А. Е. Соломатин

Институт ядерных исследований РАН, Москва

Литиевый детектор является очень эффективным для измерения потоков нейтрино от СNOцикла. Применение уравнения баланса солнечной светимости позволит определить полный поток *pp*-нейтрино с ошибкой примерно 1%, если поток нейтрино от CNO-цикла измерен с погрешностью 30%. Это станет возможным, если погрешность измерения полной скорости захвата нейтрино литием составит 10%. Это достижимо с детектором массой 10 т за 5 лет проведения эксперимента. Как правило, эксперименты с солнечными нейтрино проводятся в течение 10 лет и более.

A lithium detector is very efficient to measure the flux of CNO neutrinos from the Sun. Using a luminosity constrain it will be possible also to determine the total flux of pp-neutrinos with the uncertainty of about 1% if the flux of CNO neutrinos is measured by the accuracy of about 30%. For this one needs to measure the production rate from solar neutrinos with the accuracy on the level of 10%. This can be obtained within 5 years of measurements by using a 10 t lithium target. Usually the experiments on solar neutrinos are conducted during 10 years or more.

PACS: 14.60.Pq

введение

В настоящее время совокупность данных экспериментов по солнечным нейтрино [1–8], а также результатов эксперимента КамЛАНД [9] с антинейтрино от реакторов интерпретируются как свидетельство осцилляций нейтрино, предсказанных Б. М. Понтекорво [10]. Показано, что параметры нейтринных осцилляций принадлежат области больших углов смешивания ($\delta m^2 = 7,92 \cdot (1 \pm 0,09) \cdot 10^{-5}$ эB², sin² $\theta_{12} = 0,314 \cdot (1^{+0,18}_{-0,15})$) (см. рис. 1) [11].

Здесь используется обозначение $\delta m^2 = m_2^2 - m_1^2$, где $m_1(m_2)$ есть массовое состояние с большим (меньшим) весом компоненты электронного нейтрино. Следует заметить, что эксперимент КамЛАНД совместим с любым знаком величины разности квадратов масс δm^2 , в то время как эксперименты с солнечными нейтрино совместимы только с положительным знаком этой величины (массовое состояние с бо́льшим весом компоненты электронного нейтрино имеет меньшую массу). Только в этом случае реализуется эффект Михеева–Смирнова–Вольфенштейна (МСВ) [12, 13], который приводит к ослаблению электронных нейтрино от распада ⁸В с фактором $\cos^4 \theta_{13} \sin^2 \theta_{12} \approx 0,3$, что хорошо согласуется с данными экспериментов по солнечным нейтрино. Этот результат ($\delta m^2 > 0$) имеет фундаментальную важность для физики элементарных частиц, поскольку

Физическое обоснование литиевого эксперимента 553

Рис. 1. Допустимая область параметров нейтринных осцилляций по измерениям потоков солнечных нейтрино и из эксперимента КамЛАНД (параметр θ_{13} не зафиксирован)

определяет один из двух параметров (δm^2 и Δm^2), необходимых для установления иерархии масс нейтрино. Однако следует иметь в виду, что он получен из совокупности данных экспериментов по солнечным нейтрино и как таковой зависит от того, насколько точно эффект МСВ описывает поведение нейтрино в веществе Солнца, т. е. насколько полно учтены все факторы, определяющие этот процесс. Если что-то упущено, то не исключена иная интерпретация экспериментальных данных. На рис. 2 [14] представлена зависимость от энергии расчетного фактора ослабления электронных нейтрино за счет осцилляций, используемая в принятом в настоящее время сценарии.

Здесь имеются некоторые «белые пятна», так, например, мы не располагаем экспериментальными данными, которые бы доказывали:

 а) постоянство фактора ослабления, определяемого предположительно вакуумными осцилляциями, для нейтрино малых энергий;

Рис. 2. Коэффициент ослабления электронных нейтрино в зависимости от энергии

б) падение фактора ослабления, как результат перехода от вакуумных осцилляций к эффекту MCB, в области промежуточных энергий.

554 Копылов А.В. и др.

Итак, можно констатировать, что современная интерпретация данных экспериментов по солнечным нейтрино содержит некоторые моменты, не проверенные экспериментом. В этой связи представляется весьма перспективным исследовать поведение фактора ослабления в области малых и промежуточных энергий. Другая возможность проверки прецизионное измерение параметров нейтринных осцилляций в экспериментах с антинейтрино от реакторов, где эффект вещества пренебрежимо мал, и в экспериментах с солнечными нейтрино, где этот эффект велик. В случае, если обнаружится расхождение результатов, пусть даже малой величины, этот будет указанием на неучтенные эффекты при распространении нейтрино в веществе. В контексте всего изложенного можно сформулировать основные задачи будущих экспериментов по солнечным нейтрино:

• измерить энергетический спектр *pp*-нейтрино;

• измерить потоки нейтрино промежуточных энергий (⁷Ве- и СNO-нейтрино).

Измерение энергетического спектра pp-нейтрино подтвердит (или опровергнет) наше представление, что именно вакуумные осцилляции отвечают за ослабление потока электронных нейтрино в области энергий до 420 кэВ. Оно даст также важную информацию для прецизионного измерения угла смешивания. Измерение потоков нейтрино промежуточных энергий интересно по нескольким причинам. Во-первых, это подтвердит (или опровергнет) наши ожидания, что в этой области энергий фактор ослабления потока электронных нейтрино меняется примерно от 1/2 (для pp-нейтрино) до $\sim 1/3$ (для борных нейтрино). Во-вторых, это позволит с погрешностью на уровне 1 % определить поток pp-нейтрино, приведенный к области их генерации (в источнике), используя уравнение баланса солнечной светимости [14–16]:

$$0.913f_{pp} + 0.002f_{pep} + 0.07f_{Be} + 0.015f_{CNO} = 1.$$
 (1)

Здесь величины f есть отношение реальных потоков нейтрино (в источнике) к расчетным величинам, полученным по солнечной модели ВР2000. Из этого выражения видно, что измерение потока бериллиевых нейтрино с точностью примерно 10% и СОО-нейтрино с точностью примерно 30 % позволит определить поток *pp*-нейтрино в источнике с погрешностью примерно 1%. Это, в свою очередь, позволит улучшить точность в определении угла смешивания, найденного из отношения измеренного потока электронных *pp*-нейтрино к полному потоку нейтрино в источнике, равного $\cos^4 \theta_{13} (1 - 0.5 \sin^2 2\theta_{12})$. Кроме того, измерение потока нейтрино, генерируемых в СОО-цикле, позволит проверить правильность наших представлений о роли СОО-цикла в звездной эволюции. Это важно не только для Солнца, но и вообще для звезд, находящихся на главной последовательности диаграммы Герцшпрунга-Рассела. В настоящее время информация о роли CNO-цикла получена в исключительно галлиевых экспериментах, где установлен предел в 3,5 % на уровне 1σ (и 7 % на уровне 2σ) для его вклада в солнечную энергетику. Этой точности явно недостаточно, так как величина, ожидаемая по солнечной модели, составляет примерно 1%. Именно эта неопределенность, как видно из уравнения (1), даже при прецизионном измерении потока бериллиевых нейтрино, не позволит зафиксировать поток *pp*-нейтрино в источнике с точностью на уровне 1 %, что необходимо для дальнейшего продвижения.

Первую из перечисленных выше задач можно решить, используя реакцию νe^- -рассеяния и реакцию обратного бета-распада. Проект Xmass [15], разрабатываемый в Японии, планирует использовать сцинтилляционный детектор на основе 10 т жидкого ксенона для прецизионного измерения энергетического спектра *pp*-нейтрино по рассеянию нейтрино на электроне. Поскольку сечение реакции νe^- -рассеяния относительно велико и рассчитывается с высокой точностью, с помощью этого метода можно получить существенное уменьшение погрешности в определении угла смешивания θ_{12} . Проект LENS [16] предлагает использовать индий-115 в качестве мишени для солнечных нейтрино. Преимуществом индиевого детектора является высокое сечение захвата нейтрино:

$$^{115}\text{In} + \nu_e \to {}^{115}\text{Sn} + e^-.$$
 (2)

Предлагается использовать большой (100 т) сцинтилляционный детектор с 10 т индия, растворенного в сцинтилляторе. Для подавления фона от естественной радиоактивности изотопа ¹¹⁵In предлагается секционировать детектор и использовать дискриминацию событий по времени и координатам. Оба проекта фактически измеряют эффект от электронных *pp*-нейтрино (эффект от мюонных и тау-нейтрино по каналу νe^- -рассеяния невелик и составляет примерно 25%). Следуя логике, реализованной в эксперименте СNO в Канаде, представляется целесообразным, в плане повышения точности в определении угла смешивания, измерить также полный поток нейтрино, который фактически есть поток *pp*-нейтрино в источнике, как он определялся выше. Здесь очень ценные данные могут быть получены с помощью радиохимического литиевого детектора [17], использованием баланса солнечной светимости. Это дает возможность решить вторую из сформулированных выше задач.

Таким образом, данные, полученные с помощью литиевого детектора, позволят:

1) измерить вклад CNO-цикла в солнечную энергетику и тем самым проверить правильность нашего представления о звездной эволюции;

 измерить фактор ослабления потока электронных нейтрино в области промежуточных энергий и тем самым удостовериться в правильности принятого положения о разделении вакуумных осцилляций и эффекта MCB в области промежуточных энергий;

 измерить прецизионно угол смешивания и, сравнивая эту величину с полученной в экспериментах с антинейтрино от реакторов, проверить правильность принятого механизма осцилляций нейтрино в веществе.

Изотоп ⁷Li как перспективная мишень для захвата солнечных нейтрино был впервые предложен Г. Т. Зацепиным и В. А. Кузьминым, а также независимо Дж. Бакаллом много лет назад [18, 19]. Ядра ⁷Li и ⁷Be являются зеркальными, а переходы между этими ядрами — сверхразрешенными. Поэтому поперечное сечение реакции захвата нейтрино литием

$${}^{7}\mathrm{Li} + \nu_{e} \to {}^{7}\mathrm{Be} + e^{-} \tag{3}$$

относительно велико и рассчитывается с высокой точностью. Другими факторами, делающими детектор весьма привлекательным, являются малый атомный вес мишени и высокое (92,5%) содержание в литии изотопа ⁷Li. В совокупности это определяет малую массу детектора при сравнительно высокой эффективности регистрации. Для постановки полномасштабного литиевого детектора солнечных нейтрино достаточно 10 т лития. На рис. 3 приведена зависимость скорости захвата (произведения дифференциального потока электронных нейтрино на сечение его захвата изотопом ⁷Li) литиевого детектора от энергии нейтрино [20].

Величины скорости захвата приведены в солнечных нейтринных единицах SNU, где 1 SNU есть скорость захвата 10^{36} атомами мишени в секунду. Энергетический порог реакции (3) составляет 0,86 МэВ. Ввиду теплового уширения в веществе Солнца детектор

556 Копылов А.В. и др.

Рис. 3. Зависимость скорости захвата литиевого детектора от энергии нейтрино

способен также регистрировать бериллиевые нейтрино, как это впервые было показано Г.В.Домогацким [21], а затем более точно рассчитано Дж.Бакаллом [22]. В таблице приведены скорости захвата нейтрино для хлорного, галлиевого и литиевого детекторов без учета эффекта от осцилляций нейтрино.

Источник	Поток нейтрино, $10^{10} \text{ см}^{-2} \cdot \text{c}^{-1}$	Скорость захвата, SNU		
нейтрино		Cl	Ga	Li
pp	$5,95(1,00^{+0,01}_{-0,01})$	0,0	69,7	0,0
pep	$1,40 \cdot 10^{-2} (1,00^{+0,015}_{-0,015})$	0,22	2,8	9,2
hep	$9,3\cdot 10^{-7}$	0,04	0,1	0,1
⁷ Be	$4,77 \cdot 10^{-1}(1,00^{+0.10}_{-0,10})$	1,15	34,2	9,1
⁸ B	$5,05 \cdot 10^{-4} (1,00^{+0,20}_{-0,16})$	5,76	12,1	19,7
13 N	$5,48 \cdot 10^{-2} (1,00^{+0,21}_{-0,17})$	0,09	3,4	2,3
15 O	$4,80 \cdot 10^{-2}(1,00^{+0,25}_{-0,19})$	0,33	5,5	11,8
17 F	$5,63 \cdot 10^{-4} (1,00^{+0,25}_{-0,25})$	0,0	0,1	0,1
Всего		$7,\!6^{+1,3}_{-1,1}$	128^{+9}_{-7}	$52,3_{-6,0}^{+6,5}$

Результаты расчета по стандартной модели (ВР2000) потоков солнечных нейтрино и скоростей захвата на уровне 1σ от различных источников

Если учесть осцилляции, то суммарная скорость захвата в литии составляет 25 SNU, из них примерно 30% эффекта дают нейтрино, генерируемые в CNO-цикле, в то время как вклад CNO-цикла в солнечную энергетику составляет всего лишь 1%. В этом — основной смысл постановки литиевого эксперимента. Поскольку вклад остальных источников нейтрино может быть вычтен по результатам других экспериментов, литиевый детектор является очень эффективным для измерения потоков нейтрино от CNO-цикла. Также существенно, что для литиевого эксперимента не требуется прецизионной точности измерений. Как уже обсуждалось выше, она важна для *pp*-нейтрино и получается

автоматически применением уравнения баланса солнечной светимости, если поток нейтрино от СNO-цикла измерен с погрешностью 30%. Для этого вполне допустимая погрешность измерений в литиевом эксперименте составляет 10%, что вполне достижимо с массой детектора 10 т. Такая точность может быть достигнута за 5 лет проведения эксперимента. Это вполне приемлемо, как правило, эксперименты с солнечными нейтрино проводятся в течение 10 лет и более.

ЗАКЛЮЧЕНИЕ

Литиевый эксперимент потенциально может дать важную информацию для изучения термоядерных реакций на Солнце и для исследования новых свойств нейтрино. Следует заметить, что у литиевого детектора в настоящее время практически нет конкурентов. Создаваемые ныне электронные детекторы нацелены главным образом на регистрацию бериллиевых нейтрино, поток которых на порядок выше потока нейтрино от CNO-цикла. Пока эта задача не решена, прогноз на успешную регистрацию нейтрино от CNO-цикла с помощью электронных детекторов, по-видимому, представляется слишком оптимистичным. Сложной проблемой для этих детекторов является фон, в особенности для области малых и промежуточных энергий.

Работа была выполнена при поддержке гранта ведущих научных школ LSS-1786.2003.2, программы фундаментальных исследований Президиума РАН «Нейтринная физика» и РФФИ (грант № 04-02-16678). Авторы выражают благодарность за плодотворные обсуждения Г.Т. Зацепину, В.А. Кузьмину, Л.Б. Безрукову, а также Б.Л. Жуйкову за помощь при облучении образца алюминия на пучке протонов московской мезонной фабрики ИЯИ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cleveland B. T. et al. (Homestake Collab.) // Astrophys. J. 1998. V.496. P.505.
- 2. Abdurashitov J. N. et al. (SAGE Collab.) // J. Exp. Theor. Phys. 2002. V. 95. P. 181.
- 3. Hampel W. et al. (GALLEX Collab.) // Phys. Lett. B. 1999. V.447. P. 127.
- 4. Altmann M. et al. (GNO Collab.) // Phys. Lett. B. 2005. V. 616. P. 174.
- 5. Fukuda Y. et al. (Kamiokande Collab.) // Phys. Rev. Lett. 1996. V.77. P. 168.
- 6. Smy M.B. et al. (SK Collab.) // Phys. Rev. D. 2004. V. 69. P. 011104.
- 7. Ahmed S. N. et al. (SNO Collab.) // Phys. Rev. Lett. 2004. V. 92. P. 181301.
- 8. Aharmin B. et al. (SNO Collab.). nucl-ex/0502021.
- 9. Eguchi K. et al. (KamLAND Collab.) // Phys. Rev. Lett. 2005. V. 94. P. 081801.
- 10. Pontecorvo B. // Zh. Eksp. Teor. Fiz. 1968. V. 53. P. 1717; Sov. Phys. JETP. 1968. V. 26. P. 984.
- 11. Fogli G. L. et al. hep-ph/0506307.

- 558 Копылов А.В. и др.
- 12. Wolfenstein L. // Phys. Rev. D. 1978. V. 17. P. 2369.
- Mikheev S. P., Smirnov A. Yu. // Yad. Fiz. 1985. V. 42. P. 1441; Sov. J. Nucl. Phys. 1985. V. 42. P. 913.
- 14. Bahcall J. N., Pema-Garay C. hep-ph/0305159.
- 15. Nakahata M. // Intern. Conf. «Neutrino Oscillations and Their Origin» (NOON2004), Tokyo, 2004.
- 16. Raghavan R. // 9th Intern. Conf. on «Topics in Astroparticle and Underground Physics» (TAUP-2005), Zaragoza, Spain, 2005.
- 17. Kopylov A. V. // V Intern. Conf. on «Non-Accelerator New Physics» (NANP2005), Dubna, 2005.
- 18. Kuzmin V.A., Zatsepin G.T. On the Neutrino Spectroscopy of the Sun // Proc. of the 9th Intern. Cosmic Ray Conf. London, 1965. P. 1024.
- 19. Bahcall J. N. // Phys. Lett. 1964. V. 13. P. 332; Phys. Rev. Lett. 1969. V. 23. P. 251.
- 20. Kopylov A., Petukhov V. // Phys. Lett. B. 2002. V. 544. P. 11-15.
- 21. Domogatsky G. V. Preprint of Lebedev Physical Institute (FIAN). M., 1969. P. 153.
- 22. Bahcall J. N. // Rev. Mod. Phys. 1978. V. 50. P. 881.

Получено 27 февраля 2006 г.