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BRST CHARGES FOR FINITE NONLINEAR ALGEBRAS
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Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class
of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three
generators and ghostÄanti-ghosts commuting with constraints. We consider a one-parametric family of
quadratic algebras with three generators and show that the BRST charge acquires the conventional form
after a redeˇnition of ghosts. The modiˇed ghosts form a quadratic algebra. The family possesses a
nonlinear involution, which implies the existence of two independent BRST charges for each algebra in
the family. These BRST charges anticommute and form a double BRST complex.
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INTRODUCTION

The construction of BRST charges Q for linear (Lie) algebras of constraints is well
known. In the case of nonlinear algebras, despite the existence of quite general results
concerning the structure of the BRST charges (see, e.g., [1, 2, 7] and references therein), the
general construction is far from being fully understood. The main reason is the appearance
of nonstandard terms in Q. Another issue is a possible existence of nonlinear invertible
transformation which preserves a certain form of relations (say, leaves the relations quadratic).
The BRST charge might have a simple form in one basis, while in other bases it becomes
cumbersome.
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Among the quadratically nonlinear algebras there is a special class of so-called quantum
Lie algebras (QLA) (see [5Ä8] and references therein). The additional QLA restrictions help to
construct explicitly the BRST charges [7Ä9]. The main ingredient of the construction in [7Ä9]
is the modiˇed ghostÄanti-ghost algebra which is also quadratically nonlinear. Moreover, in
general, the ghostÄanti-ghosts do not commute with the generators of the algebra. Unfortu-
nately, the class of QLAs is not wide enough to include many interesting algebras. Therefore,
it seems desirable to extend at least some elements of the construction of the BRST charge
for QLA to broader classes of quadratic algebras. Here we report on some preliminary results
in this direction. In Secs. 1 and 2 we relax one of the restrictions to make the algebra of
constraints commute with the ghostÄanti-ghosts. The BRST charges Q can be built explicitly
in this case. In Sec. 3 we discuss an example of QLA with three generators and present its
BRST charge. In the next Section we construct BRST charges for a one-parametric family
of quadratic algebras. Two nontrivial features arise. First, the BRST charge Q takes a con-
ventional form after a redeˇnition of the canonical ghostÄanti-ghost system. The algebra of
modiˇed ghosts is quadratic as for QLAs. Second, the family admits a nonlinear involution; it
follows that any algebra of the family has two different bases with quadratic deˇning relations
(two ®quadratic faces¯) and therefore two different BRST charges. It turns out that these
BRST charges anticommute and form thus a double BRST complex.

1. QUANTUM SPACE FORMALISM

Let VN+1 be a (N + 1)-dimensional vector space. Let R ∈ End(VN+1 ⊗ VN+1) be a
YangÄBaxter R matrix, that is, a solution of the YangÄBaxter equation

R23 R12 R23 = R12 R23 R12 ∈ End(VN+1 ⊗ VN+1 ⊗ VN+1) (1.1)

(here 1, 2 or 2, 3 denote copies of the vector spaces VN+1 on which the R matrix acts
nontrivially) or, in components RAB

CD (A, B, C, D = 0, 1, . . . , N ),

RC2C3
A2A3

RB1D2
A1C2

RB2B3
D2C3

= RC1C2
A1A2

RD2B3
C2A3

RB1B2
C1D2

. (1.2)

Consider an algebra with generators χA = {χ0, χi} (i = 1, . . . , N ) and quadratic relations

RCD
AB χC χD = χA χB or (1 − R12)χ1〉 χ2〉 = 0. (1.3)

This algebra is usually called ®quantum space¯ algebra.
We extend the algebra (1.3) by ghosts cA with the following commutation relations

with χA

χAcD = cBFCD
BA χC . (1.4)

Here F is another YangÄBaxter matrix,

F23 F12 F23 = F12 F23 F12, (1.5)

which is compatible with the matrix R in the sense that

R23 F12 F23 = F12 F23 R12, F23 F12 R23 = R12 F23 F12. (1.6)
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The matrix F is called ®twisting¯ matrix for the YangÄBaxter matrix R (Eqs. (1.1), (1.5)
and (1.6) imply that the twisted matrix R̃ = FRF−1 satisˇes the YangÄBaxter equation
as well).

The multiplication of ghosts is ®wedge¯ with respect to the matrix R̃; for quadratic
combinations it reads

cJcI := cD ⊗ cB(1IJ
BD − R̃IJ

BD), 1IJ
BD := δI

BδJ
D. (1.7)

The algebra (1.3), (1.4) and (1.7) is graded by the ghost number: gh(χA) = 0,
gh(cA) = +1.

The element

Q := cA χA ≡ ci χi + c0 χ0 (1.8)

can be interpreted as a BRST operator for the quantum space algebra (1.3). Indeed, us-
ing (1.3), (1.4) and (1.7) one checks that Q2 = 0,

Q2 = c〈2 χ2〉 c〈2 χ2〉 = c〈2c〈1 F12χ1〉 χ2〉 =

= c〈2 ⊗ c〈1 (1 − R̃12)F12 χ1〉 χ2〉 = c〈2 ⊗ c〈1 F12 (1 − R12)χ1〉 χ2〉 = 0.

In the next Section we will consider the special choice of YangÄBaxter matrices R and F
for which the generator χ0 is a central element for the algebra (1.3) and (1.4). In this case,
one can ˇx χ0 = 1 and then represent the ghost variable c0 as a series

c0 =
∑
k=1

N∑
iα,jβ=1

cik+1 ⊗ · · · ⊗ ci1Xj1...jk

i1...ik+1
bj1 · · · bjk

(
gh(c0) = +1

)
, (1.9)

where Xj1...jk

i1...ik+1
are constants and bA = {b0, bi} are anti-ghost generators with the ghost

number gh (bA) = −1. The anti-ghosts bA satisfy

bAχB = FCD
AB χC bD, (1.10)

bAbB = (1IJ
AB − R̃IJ

AB)bI ⊗ bJ , (1.11)

bA cB = −cD (R̃−1)CB
DA bC + DB

A , (1.12)

where DB
A is a constant matrix such that DB

0 = 0, Di
j = δi

j . The compatibility of c0 (1.9)

with (1.4), (1.7) and (1.12) yields the unique solution for tensors Xj1...jk

i1...ik+1
in terms of the

matrix components FCD
AB and RCD

AB . In papers [7, 8] we analyzed the case F = R with a
particular R matrix (see Eq. (2.1) below) and found in this case the unique solution

Xj1...jr

i1...ir+1
= (−1)r+1

(
(1 − R2

r)(1 + Rr−1R
2
r). . .(1 + (−1)rR1. . .Rr−1R

2
r)

)j1...jr ,0

i1...ir ,ir+1

(1.13)
where Rk := Rk,k+1 and ik, jm = 1, 2, . . . , N . In the next Sections we will investigate
examples of quadratic algebras (1.3), (1.4) and (1.7) with F �= R.
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2. BRST OPERATOR FOR FINITELY GENERATED QUADRATIC ALGEBRAS

Consider a (N + 1)2 × (N + 1)2 YangÄBaxter matrix with the following restrictions on
the components RCD

AB [3]:

Rij
kl = σij

kl, R0j
kl = Cj

kl, R0A
B0 = RA0

0B = δA
B (2.1)

(other components of R vanish). Small letters i, j, k, . . . = 1, . . . , N denote indices of the
N -dimensional subspace VN ⊂ VN+1.

For the R matrix of the special form (2.1), relations (1.3) are equivalent to

[χ0, χi] = 0 and (1 − σ12)χ1〉 χ2〉 = C
〈1
12〉 χ0 χ1〉.

The generator χ0 is central and one can rescale the remaining generators, χi → χ0, χi. The
rescaled generators (still denoted by χi, i = 1, 2, . . . , N ) satisfy relations

χi1 χi2 − σk1k2
i1i2

χk1 χk2 = Ck1
i1i2

χk1 or χ1〉 χ2〉 − σ12 χ1〉 χ2〉 = C
〈1
12〉 χ1〉. (2.2)

For the R matrix (2.1) the YangÄBaxter equation (1.1) imposes certain conditions for the
structure constants σij

kl and Ck
ij which can be written in the concise matrix notation [4,6] as

σ12 σ23 σ12 = σ23 σ12 σ23, (2.3)

C
〈1
12〉 C

〈4
13〉 = σ23 C

〈1
12〉 C

〈4
13〉 + C

〈3
23〉 C

〈4
13〉, (2.4)

C
〈1
12〉 σ13 = σ23 σ12 C

〈3
23〉, (2.5)

(σ23 C
〈1
12〉 + C

〈3
23〉)σ13 = σ12 (σ23 C

〈1
12〉 + C

〈3
23〉). (2.6)

The condition (2.3) says that σ is the braid (YangÄBaxter) matrix, condition (2.4) is a
version of the Jacobi identity. The quadratic algebra (2.2) with conditions (2.3)Ä(2.6) is
called quantum Lie algebra (QLA). The usual Lie algebras form a subclass of the QLA
corresponding to σij

km = δi
mδj

k (i.e., σ is the permutation).
Below we consider the simplest, unitary, braid matrices σ, that is,

σpj
nmσki

pj = δk
nδi

m or σ2 = 1. (2.7)

Then (2.6) follows from (2.5) and symmetries of (2.2) imply that

(1 + σ12)C
〈1
12〉 = 0. (2.8)

The generators ci, bi (i = 1, . . . , N ) of the ghostÄanti-ghost algebra satisfy quadratic
relations

b1〉 b2〉 = −σ̃12 b1〉 b2〉, c〈2 c〈1 = −c〈2 c〈1σ̃12, (2.9)

b2〉 c〈2 = −c〈1 σ̃−1
12 b1〉 + I2, (2.10)
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where σ̃12 = φ12σ12φ
−1
12 . These relations are obtained from Eqs. (1.7), (1.11) and (1.12) for

the special choice of the matrix F :

F ij
kl = φij

kl, F 0A
B0 = FA0

0B = δA
B (2.11)

(other components vanish).
A cross-product of the QLA (2.2) and the ghost algebra (2.9), (2.10) is deˇned by the

commutation relations (1.4) and (1.10),

b1〉 χ2〉 = φ12 χ1〉 b2〉, χ2〉 c〈2 = c〈1 φ12 χ1〉. (2.12)

We denote this cross-product algebra by Ω. For consistency of the algebra Ω we require that
the matrix φ satisˇes relations

σ12 φ23 φ12 = φ23 φ12 σ23,

φ12 φ23 σ12 = σ23 φ12 φ23, (2.13)

φ12 φ23 φ12 = φ23 φ12 φ23,

φ12φ23C
〈1
12〉δ

〈2
3〉 = C

〈2
23〉 φ12, (2.14)

which follow from relations (1.6) and (1.5) with the YangÄBaxter matrices R and F given
by (2.1) and (2.11).

Now the construction (1.8) of the BRST operator for the QLA (2.2) and the ghost alge-
bra (2.9), (2.10), (2.12) gives the following result [10]:

Proposition. Let c0 = −1
2

cj ci φkm
ij Cr

km br. Then the element Q ∈ Ω,

Q = cjχj + c0 ∈ Ω (2.15)

satisˇes
Q2 = 0. (2.16)

For a general braid matrix σ, there are always two possibilities for the twisting ma-
trix φ. The ˇrst possibility is φ = σ; it was investigated in [5Ä9]. The second one is
φkl

nm = δk
mδl

n which leads to the tensor product of the algebra (2.2) and the ghostÄanti-ghost
algebra (2.9), (2.10). In other words, with this choice, the ghosts commute with the generators
of the QLA,

bi χj = χj bi, ci χj = χj ci. (2.17)

This possibility will be considered in the next Sections on examples of 3-dimensional nonlinear
algebras.

3. EXAMPLE OF A 3-DIMENSIONAL QLA

In this Section we present an explicit example of a ˇnite-dimensional QLA (2.2)Ä(2.7)
and construct the BRST charge for this algebra.
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The algebra we start with has four generators {χ0, χ1, χ2, χ3} which obey the following
quadratic relations:

[χ1, χ2] = 0, [χ1, χ3] = αχ2
1 + χ0 χ2, [χ2, χ3] = α χ1 χ2,

[χ0, χi] = 0, i = 1, 2, 3,
(3.1)

where α �= 0 is a parameter. This parameter can be set to one, α = 1 by rescaling of the
generators χA. One can write (3.1) in the form (1.3) with the R matrix

RAB
CD = δA

D δB
C +

(
δA
0 δB

2 + αδA
1 δB

1

) (
δ1
C δ3

D − δ3
C δ1

D

)
+

+ α
(
δA
1 δB

2 δ2
C δ3

D − δA
2 δB

1 δ3
C δ2

D

)
. (3.2)

The matrix (3.2) satisˇes the YangÄBaxter equation; it is of the form (2.1) with

σij
kl = δi

l δj
k + α δi

1 δj
1

(
δ1
k δ3

l − δ3
k δ1

l

)
+ α

(
δi
1 δj

2 δ2
k δ3

l − δi
2 δj

1 δ3
k δ2

l

)
,

Cj
kl = δi

0 δj
2

(
δ1
k δ3

l − δ3
k δ1

l

)
, i, j, k, l = 1, 2, 3.

(3.3)

The matrix σ has the form σ12 = P12 + u12, where u12 = −u21 and u2
12 = 0, so σ2 = 1

(σ belongs to the family F in the classiˇcation of GL(3) R matrices in [11]). Thus, for
χ0 = C = const, the algebra (3.1) is an example of the QLA (2.2)Ä(2.7).

According to the choice of the structure constants, the noncanonical ghostÄanti-ghost
algebra (2.9), (2.10) and (2.17) reads

(c1)2 = αc3 c1, (c2)2 = (c3)2 = 0, {c1, c3} = {c2, c3} = 0, {c1, c2} = αc3 c2,

(b1)2 = (b2)2 = (b3)2 = 0, {b1, b2} = {b1, b3} = 0, {b2, b3} = αb1b2,

{b1, c1} = −αc3 b1 + 1, {b2, c2} = {b3, c3} = 1, {b3, c2} = αc2 b1,

{b2, c1} = −αc3 b2, {b3, c1} = αc1 b1, {b1, c2} = {b1, c3} = {b2, c3} = 0,

[χi, cj ] = 0 = [χi, bj ],
(3.4)

where {., .} stands for the anti-commutator. Then the BRST operator (2.15) for the ghostÄ
anti-ghost algebra (3.4) has the standard form

Q =
3∑

i=1

ciχi − c1 c3 C b2, (3.5)

and one can recheck directly that Q2 = 0.
We note that under the following nonlinear invertible transformation of the generators,

χ2 �→ χ2 + γχ2
1,

where α = 2γχ0, relations (3.1) have a different, but still quadratic, form

[χ1, χ2] = 0, [χ1, χ3] =
α

2
χ2

1 + χ0 χ2, [χ2, χ3] = 2α χ1 χ2. (3.6)
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These relations cannot be presented in the form (1.3) with an R matrix (2.1) and any GL(3)
matrix σ.

For the ghost algebra (3.4) the Fock space F is constructed in the standard way. Let V
be a left module over the algebra (3.1). For any vector |ψ〉 ∈ V we require

bi|ψ〉 = 0, (3.7)

i.e., the anti-ghosts {bi} are annihilation operators for all vectors in V . Then the Fock space
F is generated from V by the ghost operators {ci} (creation operators) and in view of (3.4)
any vector |Φ〉 ∈ F has the form

|Φ〉 = |ψ0〉 +
3∑

i=1

ci|ψi〉 +
∑
i<j

cicj |ψij〉 + c1c2c3|ψ123〉, (3.8)

where |ψ...〉 ∈ V . The ®physical subspace¯ in F is extracted by the condition

Q|Φ〉 = 0, (3.9)

which gives
χi|ψ0〉 = 0, i = 1, 2, 3, . . .

Since the vector |ψ0〉 is annihilated by the ˇrst class constraints χi, this vector belongs to the
physical subspace in V .

In the next Section we will show that the quadratic ghost algebra (3.4) can be realized in
terms of the canonical ghosts and anti-ghosts {ci,bj} (cf. the standard deformation of the
algebra of the bosonic creation and annihilation operators [12]).

4. BRST OPERATOR FOR A 3-DIMENSIONAL NONLINEAR ALGEBRA

We construct the BRST operator for the algebra, which generalizes the QLAs (3.1)
and (3.6):

[J, W ] = a1T + a2J
2, [J, T ] = 0, [T, W ] = a3J T, (4.1)

with a1, a2, a3 �= 0. By rescaling of the generators, two of three coefˇcients {a1, a2} or
{a1, a3} may be arbitrarily ˇxed. In what follows we prefer to leave all these coefˇcients
free and ˇx them at the end of calculations, if needed.

The values a3/a2 = 1 (respectively, a3/a2 = 4) correspond to the algebra (3.1) (respec-
tively, (3.6)), where we should identify

χ1 = J, χ2 = T, χ3 = W.

For a3/a2 = −16 or a3/a2 = −1/4 this algebra is a ˇnite-dimensional ®cut¯ of the bosonic
part of the N = 2 super W3 algebra [13] {J = J−1, T = L̃1, W = W2}.

The algebra (4.1) is quadratic and we may construct the BRST charge using quadratic
ghosts along the lines discussed at the beginning of this paper (see [5Ä10] also). Neverthe-
less, to make steps more transparent we ˇrst construct the BRST charge with the canonical
ghostÄanti-ghost generators and then deˇne the nonlinear ghosts systems in which the BRST
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charge drastically simpliˇes. So we introduce the fermionic ghostÄanti-ghost generators
{bJ , cJ ,bT , cT ,bW , cW } with the standard relations

{
bJ , cJ

}
= 1,

{
bT , cT

}
= 1,

{
bW , cW

}
= 1 (4.2)

(other anti-commutators are zero).
By virtue of a rather simple structure of the algebra (4.1) the BRST charge can be easily

found to be

Q = cJ J + cT T + cW W − a1cJcW bT − a3T cT cW bJ + a2 JcW cJbJ , (4.3)

where we assumed the ®initial condition¯

Q = cJ J + cT T + cW W + higher order terms (4.4)

and used the ordering with the annihilation operators {bi} on the right. If we relax the ®initial
condition¯, then the BRST charge is not unique. For example, the operator Q′ = Q + μJ cW

(μ is a constant) satisˇes (Q′)2 = 0 as well.
The last two terms in the BRST charge (4.3) are unconventional. Let us now rewrite the

BRST charge as follows:

Q =
(
cJ + a2 cW cJbJ

)
J + cW W − a1

(
cJ + a2 cW cJbJ

)
cW bT +

+
(
cT − a3cT cW bJ

)
T. (4.5)

It is now clear that the BRST charge (4.5) acquires the conventional form (of the type (2.15))
after introducing ®new¯ ghosts {cJ , cT , cW }:

cJ = cJ + a2 cW cJbJ , cT = cT − a3cT cW bJ , cW = cW . (4.6)

In terms of new ghosts the BRST charge (4.5) reads

Q = cJ J + cT T + cW W − a1c
JcWbT , (4.7)

in agreement with the ideas discussed above and in [5Ä10]. It is straightforward to write the
relations for the new ghostÄanti-ghost generators (4.6); they form a quadratic algebra

{
cJ , cJ

}
= −2a2c

J cW ,
{
cJ , cT

}
= −a3c

T cW ,
{
cJ ,bJ

}
= 1 − a2 cWbJ ,{

cJ ,bW

}
= a2 cJbJ ,

{
cT ,bT

}
= 1 − a3 cW bJ ,

{
cT ,bW

}
= a3 cTbJ , (4.8){

cW ,bW

}
= 1,

other anti-commutators are zero. To relate this ghostÄanti-ghost algebra and the BRST
charge (4.7) with the algebra (3.4) and the BRST charge (3.5) we need also to redeˇne the
anti-ghost variables

bJ = bJ , bT = bT + a3cW bJbT , bW = bW ,

and ˇx a2 = a3 = α, a1 = C.
Thus, we see that the price we have to pay for the conventional form of the BRST charge

is the quadratically nonlinear ghostÄanti-ghost algebra, as it has been claimed in [5Ä8, 10].
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4.1. Double BRST Complex. An interesting peculiarity of the family (4.1) of nonlinear
algebras is an existence of nonlinear redeˇnitions of the generators. Redeˇne the generator
T �→ T ,

T = T + βJ J (4.9)

(β is a constant). In terms of generators {J, T , W} the algebra (4.1) becomes cubic for
general β. However, it is amusing that for

β =
2a2 − a3

2a1
(4.10)

the commutators of the generators {J, T , W} are again quadratic,

[J, W ] = ã1T + ã2J
2, [J, T ] = 0, [T , W ] = ã3J T , (4.11)

where
ã1 = a1, ã2 =

a3

2
, ã3 = 2a2. (4.12)

By rescalings, one can set a1 to 1 and leave t = 2a2/a3 as the essential parameter of the
family. The transformation (4.12) is the involution t̃ = 1/t.

Therefore, our (in general, cubic) algebra has two ®quadratic faces¯. Now we immediately
conclude that for the second ®face¯ another BRST charge Q̃ exists,

Q̃ = cJ J + cT T + cW W − ã1cJcW bT − ã3T cT cW bJ + ã2 JcW cJbJ (4.13)

(it is constructed in the same way as (4.3)). Moreover, one checks that

Q̃2 = 0, and
{
Q, Q̃

}
= 0. (4.14)

Thus, for our algebra (4.1) we have two nontrivial BRST operators Q, Q̃ forming a double
complex. Both operators are linear in the generators of the algebra and satisfy the initial
condition (4.4) but in different bases: Q in the basis {J, T, W} and Q̃ in the new basis
{J, T , W}. In the basis {J, T , W}, the BRST operator Q does not satisfy initial condi-
tion (4.4), it contains nonlinear in J terms. The same is true for Q̃ in the basis {J, T, W}.
For an algebra, having several quadratic faces, related by nonlinear transformations, one can
impose standard initial condition in any of them and build Å in general, nonequivalent Å
BRST charges (cf. the Lie algebra [x, y] = y and transformations x �→ x + f(y), f is a
polynomial).

CONCLUSION

We extended some elements of the construction of BRST charge for quantum Lie algebras
to more general quadratic algebras. We explicitly found the BRST charges in the examples
when the constraints commute with the ghostÄanti-ghosts. We discussed an example of a QLA
with three generators and presented the BRST charge for this algebra. As another interesting
example we considered, as an analogue of a QLA, a one-parametric family of quadratic
algebras with three generators. On this simple example we have shown that one can redeˇne
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the ghostÄanti-ghost system in such a way that the BRST operator takes the conventional form
Q = ciχi + ®ghost terms¯ (2.15). The modiˇed ghosts form a quadratically nonlinear algebra
as for QLAs. In addition, the members of this family admit two different presentations with
quadratic deˇning relations. In agreement with general considerations in each presentation
there is a conventional BRST charge. Being written in one basis they give rise to two
inequivalent BRST charges Q, Q̃ which anticommute and form a double BRST complex.
We think that any algebra possessing several quadratic faces should have inequivalent BRST
charges.

As immediate applications of our results one may try to construct the modiˇed ghostÄ
anti-ghost system for some known nonlinear (super)algebras to simplify their BRST charges.
Being extremely interesting (for us), this task seems to be less important than an analysis of
situations with several BRST charges.
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