
�¨¸Ó³  ¢ �—�Ÿ. 2010. ’. 7, º4(160). ‘. 473Ä482

Š�Œ�œ�’…�	›… ’…•	�‹�ƒˆˆ ‚ ”ˆ‡ˆŠ…

FAST PARALLEL TRACKING ALGORITHM
FOR THE MUON DETECTOR

OF THE CBM EXPERIMENT AT FAIR
A. Lebedev a,b, C.Héohne a, I. Kisel a, G.Ososkov b

(for the CBM Collaboration)

a Gesellschaft féur Schwerionenforschung mbH, Darmstadt, Germany
b Joint Institute for Nuclear Research, Dubna

Particle trajectory recognition is an important and challenging task in the Compressed Baryonic
Matter (CBM) experiment at the future FAIR accelerator at Darmstadt. The tracking algorithms have
to process terabytes of input data produced in particle collisions. Therefore, the speed of the tracking
software is extremely important for data analysis. In this contribution, a fast parallel track reconstruction
algorithm which uses available features of modern processors is presented. These features comprise a
SIMD instruction set (SSE) and multithreading. The ˇrst allows one to pack several data items into one
register and to operate on all of them in parallel thus achieving more operations per cycle. The second
feature enables the routines to exploit all available CPU cores and hardware threads. This parallel
version of the tracking algorithm has been compared to the initial serial scalar version which uses a
similar approach for tracking. A speed-up factor of 487 was achieved (from 730 to 1.5 ms/event) for a
computer with 2×Intel Core i7 processors at 2.66 GHz.

�¥±μ´¸É·Ê±Í¨Ö É· ¥±Éμ·¨° § ·Ö¦¥´´ÒÌ Î ¸É¨Í Å ÔÉμ ¢ ¦´ Ö ¨ ¸²μ¦´ Ö § ¤ Î  ¢ Ô±¸¶¥·¨-
³¥´É¥ CBM (Compressed Baryonic Matter) ´  ¡Ê¤ÊÐ¥³ Ê¸±μ·¨É¥²¥ FAIR ¢ „ ·³ÏÉ ¤É¥. �²£μ·¨É³
·¥±μ´¸É·Ê±Í¨¨ É·¥±μ¢ ¤μ²¦¥´ μ¡· ¡μÉ ÉÓ É¥· ¡ °ÉÒ ¢Ìμ¤´ÒÌ ¤ ´´ÒÌ, ¢Ò· ¡ ÉÒ¢ ¥³ÒÌ ¢ ¸Éμ²±-
´μ¢¥´¨ÖÌ Î ¸É¨Í. ‘²¥¤μ¢ É¥²Ó´μ, ¸±μ·μ¸ÉÓ · ¡μÉÒ  ²£μ·¨É³  ·¥±μ´¸É·Ê±Í¨¨ É·¥±μ¢ Î·¥§¢ÒÎ °´μ
¢ ¦´  ¤²Ö μ¡· ¡μÉ±¨ ¤ ´´ÒÌ. ‚ · ¡μÉ¥ ¶·¥¤¸É ¢²¥´ ¡Ò¸É·Ò° ¶ · ²²¥²Ó´Ò°  ²£μ·¨É³ ·¥±μ´¸É·Ê±-
Í¨¨ É·¥±μ¢, ¨¸¶μ²Ó§ÊÕÐ¨° ¢μ§³μ¦´μ¸É¨ ¸μ¢·¥³¥´´ÒÌ ¶·μÍ¥¸¸μ·μ¢, ¢ Î ¸É´μ¸É¨ ´ ¡μ· ¸¨¸É¥³´ÒÌ
±μ³ ´¤ SIMD (SSE) ¨ ³´μ£μ¶μÉμÎ´μ¸ÉÓ. �¥·¢ Ö μ¸μ¡¥´´μ¸ÉÓ ¶μ§¢μ²Ö¥É Ê¶ ±μ¢Ò¢ ÉÓ ´¥¸±μ²Ó±μ
Ô²¥³¥´Éμ¢ ¤ ´´ÒÌ ¢ μ¤¨´ ·¥£¨¸É· ¨ ¢Ò¶μ²´ÖÉÓ μ¶¥· Í¨¨ ´ ¤ ¢¸¥³¨ ¤ ´´Ò³¨ ¶ · ²²¥²Ó´μ, ¤μ¸É¨£ Ö
É ±¨³ μ¡· §μ³ ¡μ²ÓÏ¥£μ ±μ²¨Î¥¸É¢  μ¶¥· Í¨° §  É ±É. ‚Éμ· Ö μ¸μ¡¥´´μ¸ÉÓ ¶μ§¢μ²Ö¥É ¨¸¶μ²Ó§μ¢ ÉÓ
¢¸¥ ¢μ§³μ¦´Ò¥ Ö¤·  ¨  ¶¶ · É´Ò¥ ¶μÉμ±¨ ¶·μÍ¥¸¸μ· . �·μ¢¥¤¥´μ ¸· ¢´¥´¨¥ ¶ · ²²¥²Ó´μ° ¢¥·¸¨¨
 ²£μ·¨É³  ·¥±μ´¸É·Ê±Í¨¨ É·¥±μ¢ ¸ ¶¥·¢μ´ Î ²Ó´μ° ¶μ¸²¥¤μ¢ É¥²Ó´μ° ¸± ²Ö·´μ° ¢¥·¸¨¥°, ¨¸¶μ²Ó-
§ÊÕÐ¥°  ´ ²μ£¨Î´Ò° ¶μ¤Ìμ¤ ¤²Ö ·¥±μ´¸É·Ê±Í¨¨ É·¥±μ¢. „μ¸É¨£´ÊÉμ Ê¸±μ·¥´¨¥ ¢ 487 · § (¸ 730 ¤μ
1,5 ³¸/¸μ¡ÒÉ¨¥) ¤²Ö ±μ³¶ÓÕÉ¥·  ¸ ¤¢Ê³Ö ¶·μÍ¥¸¸μ· ³¨ Intel Core i7 (2,66 ƒƒÍ).

PACS: 29.20.db; 29.40.Gx; 29.85.Fj

INTRODUCTION

The Compressed Baryonic Matter (CBM) [1] experiment will be a dedicated setup for the
measurement of ˇxed target heavy-ion collisions at the future FAIR accelerator at Darmstadt.
It is being designed for the investigation of the properties of highly compressed baryonic



474 Lebedev A. et al.

matter [2]. High reaction rates (up to 10 MHz), events with large track multiplicity (about
800 charged particles per central Au+Au collision in the CBM detector acceptance) and high
hit density are expected in the CBM experiment. This leads to special requirements for the
tracking software, which has to perform fast and stable in such an environment. Currently,
two different CBM setups are under investigation, one for electron and the other for muon
measurements [3]. In the work presented here only the CBM setup for muon measurements
is considered. In this case, the CBM setup consists of several detectors including as tracking
detectors the silicon tracking system (STS), consisting of 8 silicon microstrip detector stations,
located inside a large acceptance dipole magnet for track and vertex reconstruction and
momentum determination, and the muon detector (MUCH). The layout of these detectors is
still in the process of optimization. For the work presented here, the muon system consists of
6 hadron absorber layers made of iron of variable thickness, of 2 tracking detectors between
each of the gaps and of 3 tracking detectors after the last absorber (see Fig. 1). The detector
technology is still under discussion. GEM technology is the most promising candidate for
regions with high hit density. For the outer parts at lower hit density, straw tubes or MWPCs
are under discussion. For the work presented here, the detectors are implemented as GEM
detectors with a minimum pad size of 0.28× 0.28 cm for the inner regions of the ˇrst station
and with a maximum pad size of 4.48 × 4.48 cm for the outer regions of the last station.
No detector inefˇciency is currently implemented in the simulation. For the measurement of
muons from the decay of low-mass vector mesons (ρ, ω, φ) muons are required to pass only
an iron absorber thickness of 125 cm (7.5λI , with λI being the nuclear interaction length),
whereas for muons from the decay of charmonia the full absorber length of 225 cm is used
(total thickness of 13.4λI). This difference in muon identiˇcation is related to the fact that
muons from low-mass vector measons only have momenta of 1 GeV/c on average, while the
mean momentum for muons from charmonia is 6 GeV/c. The shorter absorber length which
is required for muons from low-mass vector measons enhances their identiˇcation probability,
however on account of a larger background.

The speed of the tracking algorithm is extremely important for any analysis of data in CBM
as CBM will be a high-rate experiment collecting terabytes of data. In this contribution, a
fast parallel track reconstruction algorithm which uses available features of modern processors
is presented. These features comprise a SIMD instruction set and multithreading. The ˇrst
allows one to pack several data items into one register and to operate on all of them in parallel

Fig. 1. Sketch of the silicon tracking system (STS) and the muon detector (MUCH)



Fast Parallel Tracking Algorithm for the Muon Detector of the CBM Experiment at FAIR 475

thus achieving more operations per cycle. The second feature enables the routines to exploit
all available CPU cores and hardware threads. The use of this modern CPU technologies
allows one to achieve a high calculation speed of the tracking algorithm.

1. TRACK RECONSTRUCTION ALGORITHM

MUCH track reconstruction in CBM is based on track following using reconstructed
tracks in the STS as seeds. In the STS track reconstruction is based on the cellular automaton
method [4] and STS track parameters are used as starting point for the following track
prolongation. This track following is based on the standard Kalman Filter technique [5] and
is used for the estimation of track parameters [6] and trajectory recognition.

Track Propagation. The track propagation algorithm estimates the trajectory and its
errors in a covariance matrix while taking into account three physics effects which in
uence
the trajectory, i.e., energy loss, multiple scattering and the in
uence of a magnetic ˇeld.
The in
uence of the material on the track momentum is taken into account by calculating
the expected average energy loss due to ionization (BetheÄBloch formula), bremsstrahlung
(BetheÄHeitler formula) and direct pair production [7]. The in
uence on the error, i.e.,
the covariance matrix due to multiple scattering is included by adding process noise in
the track propagation. Here, a Gaussian approximation using the Highland formula [7] is
used to estimate the average scattering angle. The propagation of the trajectory is done
according to the equation of motion. If the track passes a magnetic ˇeld the equation of
motion for a charged particle is solved applying the 4th order RungeÄKutta method [8]. If
passing a ˇeld free region a straight line is used for propagation and the transport matrix
calculation. The transport matrix is calculated by integrating the derivatives along the so-
called zero trajectory [9]. A detailed description of the developed track propagation can be
found in [10,11].

Track Finding. In the track ˇnding algorithm tracks are prolongated subsequently from
one detector station to the next adding additional hits in each detector. For the attachment
of hits a validation gate is calculated, according to the chosen probability for rejecting the
correct hit. The nearest neighbor approach is used to choose the hit to be assigned to a track,
i.e., the algorithm attaches the nearest hit if lying in the validation region at all. After the hit
is attached, track parameters are updated with the Kalman Filter. The algorithm allows for
2 missing hits out of 13 in total, taking into account that for each station approximately 4%
of the area is covered by detector frames. The allowed number of missing hits will have to
be reconsidered when implementing realistic detector inefˇciencies. Currently, 2 missing hits
are a compromise between efˇciency and speed of the tracking algorithm.

Track Selection. After track ˇnding, so-called clone tracks (consisting of a very similar
set of hits) and ghost tracks (consisting of a set of hits from different tracks) have to be
rejected while keeping correctly found tracks with high efˇciency. The selection algorithm
works in two steps. First, tracks are sorted by their quality which is deˇned by the track
length and χ2. Then, starting from the highest quality tracks all hits belonging to a track are
checked. In particular, the number of hits shared with other tracks is calculated and the track
is rejected if more than 15% of the hits are shared.



476 Lebedev A. et al.

2. PARALLELISM: SIMD AND MULTITHREADING

SIMD is short for Single Instruction Multiple Data. It refers to a computing method that
enables processing of multiple data with a single instruction. Using a simple summation as
an example, the difference between scalar and SIMD operations is illustrated in Fig. 2. With
conventional scalar operations, four add instructions must be executed one after another to
obtain the sums as shown in Fig. 2, a. Meanwhile, SIMD uses only one add instruction to
achieve the same result, as shown in Fig. 2, b. Requiring fewer instructions to process a given
amount of data, SIMD operations yield higher computational speed than scalar operations.
The Intel Streaming SIMD Extension (SSE) technology [12] is supported by modern CPUs. A
set of SSE Intrinsics allows the use of SSE instructions directly from C++ code. Processors
with Intel SSE support have a set of 128-bit registers, each of which may contain four 32-bit
single-precision 
oating-point numbers. SSE is a set of instructions which allows one to load
the 
oating-point numbers to 128-bit registers, performs the arithmetic and logical operations
with them and writes the result back to memory. In a C++ program the use of SSE Intrinsics
allows one not to care about registers. A m128 data type and a set of functions are provided
to perform the arithmetic and logical operations. It is up to the C++ compiler to decide
which SSE register to use and to make code optimizations. However, C++ code using
SSE instructions uses different expressions compared to code with the corresponding scalar
instructions, e.g., c = mm add ps(a, b) instead of c = a + b. Rewriting the code using
vector instructions would require to provide support for both, scalar and vector, versions,
duplicating modiˇcations, debugging and testing. Therefore, the SSE vector instructions were
set in a header ˇle, overloading all operands and inlining several functions [13]. In this way
the source code remains the same, and possible changes of the code in the future will be valid
for both, scalar and vector, versions. Moreover, overloading the operands provides a more
elegant and familiar way to program with SSE using C++.

Multicore processors have made parallel programming more and more mainstream and it
is no longer optional. Motivated by this fact the possibilities to use multithreading in the
track reconstruction were investigated. For this the Intel Threading Building Blocks (TBB)
library [14] was used. TBB is a C++ template library for parallelism that extends C++
by abstracting away thread management and allowing straightforward parallel programming.
TBB supports scalable parallel programming, which means that programs using TBB will run
on systems with a single-processor core, as well as on systems with multiple-processor cores
taking advantage of all available cores.

Fig. 2. Comparison between scalar (a) and SIMD (b) summation. With scalar summation four add
instructions are executed one after another, meanwhile, SIMD uses only one add instruction to achieve

the same result



Fast Parallel Tracking Algorithm for the Muon Detector of the CBM Experiment at FAIR 477

3. SPEED-UP OF THE ALGORITHM

Based on the possibilities offered by SIMD and multithreading the tracking algorithm
for the MUCH detector in CBM has been modiˇed yielding an increased speed by a fac-
tor 100. Changes will be discussed in this paragraph. They include necessary modiˇcations
in the track propagation and track ˇtter in order to SIMDize the algorithm. Also, the track
ˇnder algorithm was modiˇed to use a SIMDized track propagator and track ˇtter and the
multithreading capabilities have been implemented to the tracking algorithm.

The Kalman Filter-based track ˇt is in intensive use in the track reconstruction algorithm.
Therefore, its speed is very critical for the track reconstruction. Following the developments
of the SIMDized Kalman Filter-based track ˇt for the STS tracking in CBM [13], several
modiˇcations of the Kalman Filter-based track ˇt algorithm in the MUCH detector have also
been investigated here for improved speed. The development is based on a tracking algorithm
which has been developed using a double precision scalar version of the Kalman Filter [11].
In the following this is referred to as the ®initial scalar version¯.

Proˇling the scalar version of the track propagation procedure it was found that the bottle
neck is the access to the ˇeld map. The reason is that for the application in CBM the
algorithm uses a 70 MB large ˇeld map, therefore permanently accesses the main memory.
It is obvious, that running on a conventional computer the performance of an algorithm with
data located in the main memory is signiˇcantly slower comparing to one working with the
cache. The magnetic ˇeld of the CBM magnet is smooth and can be locally approximated
by polynomials. It was found to be sufˇcient for the track propagator to use a polynomial
of the third order to approximate the ˇeld in the planes of each station (see Fig. 3). The
ˇeld behavior between stations is approximated by a straight line or parabola with coefˇcients
calculated from the two or three closest stations, since the ˇeld is only needed along the track
to be propagated. Track parameters taken with the polynomial approximation of the magnetic
ˇeld are as precise as those calculated using the full magnetic ˇeld map.

Fig. 3. The most signiˇcant magnetic ˇeld component By in the detector station after the ˇrst iron

absorber (z = 125 cm) calculated using polynomial approximation (a) and the difference between the

approximation and the ˇeld map (b)



478 Lebedev A. et al.

The initial scalar version of the track propagator uses a geometry navigation based on the
ROOT geometry package. It is a very precise method for geometry navigation, however, not
efˇcient in terms of calculation speed. First, because it uses the detailed Monte-Carlo detector
geometry, currently consisting of 800 000 nodes and probably more in the future implementing
more detailed detector layouts. Second, because this algorithm is rather general and not
optimized for the CBM setup. Thus, a simpliˇed detector geometry and an optimized geometry
navigation algorithm were developed. The simpliˇed geometry is created by converting the
detailed Monte-Carlo detector geometry into a reduced one, which only consists of planes
perpendicular to the beam direction. The navigation in such a simpliˇed geometry has been
signiˇcantly optimized.

In the initial serial scalar version of the tracking algorithm [11] tracks are propagated
through the detector sequentially one by one, picking up the nearest hits on the detector
stations. The use of such an approach does not allow one to apply directly SIMDized track
propagation and ˇtting routines. Thus, the track ˇnder algorithm was signiˇcantly changed
in order to be SIMDized. In Listing 1 the pseudocode of the modiˇed version of the tracking
algorithm is presented. Since all tracks are independent and are propagated by the same
algorithm, one can propagate four tracks in parallel after packing the correspondent four
scalar track parameters from different tracks into vectors. This reduces the loop size four
times.

Finally, multithreading was implemented in the tracking. Since the parallel SIMDized
propagation of each four tracks is independent of each other, each such track propagation can
be executed concurrently in different threads. The number of threads depends on the number
of CPU cores and the number of propagated tracks.

Listing 1: Pseudocode of the parallel tracking algorithm

1 for (number of station groups) {

2 parallel_for (number of tracks / 4) {

3 pack track parameters;

4 SIMDized propagation of 4 tracks in parallel through the absorber;

5 }

6 for (number of stations) {

7 parallel_for (number of tracks / 4) {

8 pack track parameters;

9 SIMDized propagation of 4 tracks in parallel to the station;

10 attach the nearest hit to the track;

11 }

12 }

13 }

Some other neccesary computational optimizations have been implemented, like the re-
placement of the matrix operations in the Kalman Filter by explicit calculations only on
nontrivial matrix elements. For better performance most of the loops have been unrolled and
branches (if, continue, break, etc.) have been eliminated.

Optimization of Combinatorics. The hit-to-track assignment procedure in the track
ˇnding algorithm was optimized. The simplest way is to loop over all hits in the detector
station, and for each hit update the track parameters with the Kalman Filter method, calculate
the validation gate and check whether the hit falls into the validation gate or not. However,
these loops are very time-consuming, and moreover, most of them are running without success



Fast Parallel Tracking Algorithm for the Muon Detector of the CBM Experiment at FAIR 479

as no hit is attached to the track. To solve this issue a fast search of hit-candidates has been
developed. The method is executed before the described loop and selects a certain range of
hits corresponding to the most probable track position for the more precise check performed
afterwards.

4. PERFORMANCE OF THE PARALLEL TRACKING ALGORITHM

Performance of the SIMDized Track Fitter. The quality of the track ˇt is evaluated
using two sets of values:

1. Residuals which show the deviation between the simulated and the estimated values:

Δx = xMC − xreconstr,

xMC is the true Monte-Carlo track parameter and xreconstr is the estimated one;
2. Pulls (or normalized residuals) which evaluate the correctness of the error propagation:

pullx =
xMC − xreconstr

σx
,

σx is the value from the propagated covariance matrix. Therefore, assuming a correct predic-
tion, pulls should be distributed with a variance of 1 around the mean value 0.

The algorithm has been tested using simulated tracks which have been transported through
the CBM setup using GEANT3 [15]. First, only muons from the primary vertex have
been investigated: 5 · 104μ+ and 5 · 104μ− with a 
at distribution in momentum p (p =
2.5−25 GeV/c), polar angle θ (θ = 2.5−25◦) and azimuthal angle φ (φ = 0−360◦).

The widths of Gaussians ˇtted to the residual and pull distributions are presented in
Table 1. Some distributions are shown in Fig. 4. All pulls are centered at zero indicating that
there is no systematic shift in the estimated track parameter values. The pull distributions are
well ˇtted by a Gaussian with small tails caused by various non-Gaussian contributions to the
ˇt. The q/p pull shows slightly underestimated errors as a result of approximations made in
the material treatment of the track ˇtting procedure. The residual and pull values are similar
for the scalar and SIMDized versions of the track ˇtter.

Table 2 shows the computational times and speed-up factors for the track ˇtter algorithm
in the muon detector for two computers: 1) PC1 with an Intel Core 2 Duo processor at
2.26 GHz, and 2) PC2 with 2×Core i7 processors at 2.66 GHz. For PC1 the 60 times
acceleration is achieved by the substantial optimization of the algorithms described above.

Table 1. Widths of the residual and pull distributions ˇtted by a Gaussian shape for the SIMDized
track ˇtter algorithm at the last MUCH station behind the whole absorber

x, cm y, cm tx ty q/p, GeV−1

Residuals

0.40 0.38 0.0073 0.0073 0.0041

Pulls

1.0 0.99 1.08 1.09 1.53



480 Lebedev A. et al.

Fig. 4. Selected performance distributions for the SIMDized track ˇtter algorithm at the last MUCH
station: a) x residual; b) x pull; c) tx pull; d) q/p residual. Numbers show the width of a Gaussian

ˇtted to the distributions (ˇrst number) and the root mean square value as second number

For PC2 the gain is even more Å 101. Changing the data representation from the scalar to
the vector (SIMD) format results in a 3 times faster algorithm. Running several threads of
the SIMDized track ˇtter routine in parallel gaines speed up of 1.8 for the 2 core PC1 and
8.8 for the 8 core PC2. In total, the speed-up factor of 324 (from 1100 to 3.4 μs/track) is
achieved for the PC1 computer and a factor of 2400 (from 1200 to 0.5 μs/track) for the PC2
computer.

Performance of the Track Finder. In order to test the parallel tracking algorithm,
central Au+Au collisions at 25AGeV beam energy were simulated with UrQMD [16] and

Table 2. Speed-up of the track ˇtter algorithm

PC1 with Core 2 Duo PC2 with 2×Core i7

Time/track, μs Speed-up Time/track, μs Speed-up

Initial 1100 Å 1200 Å

Optimization 18.4 60 13 92

SIMDization 6.2 3 4.4 3

Multithreading 3.4 1.8 0.5 8.8



Fast Parallel Tracking Algorithm for the Muon Detector of the CBM Experiment at FAIR 481

Table 3. Speed-up of the track ˇnder algorithm

PC1 with Core 2 Duo PC2 with 2×Core i7

Time/track, μs Speed-up Time/track, μs Speed-up

Initial 636 Å 730 Å

Optimization 10.2 62 7.2 101

SIMDization 6.4 1.6 4.9 1.5

Multithreading 4.2 1.5 1.5 3.3

propagated through the CBM setup using GEANT3 [15]. These events were used to estimate
the background in which the interesting signal, i.e., muons from the primary vertex were
embedded. In order to enhance statistics 5μ+ and 5μ− were embedded in each event at
the primary vertex. Compared to the average multiplicity of charged tracks in the acceptance
(appr. 800) they do not distort the overall conditions. Hits were calculated from the MC infor-
mation using semirealistic detector response. The above-described parallel tracking routines
were then tested on this dataset. Reconstructed tracks in the MUCH detector were required
to pass through the whole iron absorber of 2.25 m length. This is the condition which would
be used for J/ψ reconstruction. The comparison of the initial serial scalar version and the
parallel version of the tracking shows that on account of a minor loss in the momentum
integrated track reconstruction efˇciency (from 94.7 to 94.0%) the parallel tracking algorithm
is much faster (see Table 3). A speed-up of 62 is achieved for PC1 by optimization of the
algorithm and the use of the optimized Kalman Filter routines. For PC2 the speed-up is even
more 92. SIMDization and multithreading give less speed-up factors than for the track ˇtter,
which can be explained that some parts of the track ˇnder are not completely SIMDized and
parallel. In total, the parallel tracking algorithm is 151 times faster than the initial serial scalar
algorithm (from 636 to 4.2 ms/event) for the PC1 computer and 487 times faster (from 730
to 1.5 ms/event) for the PC2 computer.

SUMMARY

Next generation experiments as the CBM detector planned at FAIR aim at data recording
rates not experienced so far. In order to perform efˇcient analysis, fast tracking algorithms are
essential. For CBM a parallel tracking algorithm for the muon detector was developed based
on track seeds from the track reconstruction in the silicon tracking system located inside a
dipole magnet. The algorithm uses two features of modern CPUs: a SIMD instruction set and
multithreading. The comparison between the parallel tracking algorithm and the initial serial
scalar one shows that on account of a minor loss in track reconstruction efˇciency (from 94.7
to 94.0%) the parallel tracking algorithm is 487 times faster than the initial one (from 730
to 1.5 ms/event) for a computer with 2×Intel Core i7 processors at 2.66 GHz. The use of
multithreading and SIMD will be much more obvious in the future with the next generation
of many-core processors.

REFERENCES

1. Compressed Baryonic Matter Experiment. Technical Status Report. 2005.
http://www.gsi.de/documents/DOC-2005-Feb-447-1.pdf

2. Héohne C., Rami F., Staszel P. // Nucl. Phys. News. 2006. V. 16, No. 1. P. 19Ä23.



482 Lebedev A. et al.

3. Héohne C. // J. Phys. G: Nucl. Part. Phys. 2008. V. 35, No. 104160. 5 p.;
doi: 10.1088/0954-3899/35/10/104160

4. Kisel I. Event Reconstruction in the CBM Experiment // Nucl. Instr. Meth. A. 2006. V. 566.
P. 85Ä88.

5. Kalman R. A New Approach to Linear Filtering and Prediction Problems // Transactions of the
ASME: J. of Basic Engin. Ser. D. 1960. V. 82. P. 35Ä45.

6. Fruhwirth R. Application of Kalman Filtering to Track and Vertex Fitting // Nucl. Instr. Meth. A.
1987. V. 262. P. 444Ä450.

7. Amstel C. et al. The Review of Particle Physics // Phys. Lett. B. 2008. V. 667.

8. Press W. et al. Numerical Recipes: The Art of Scientiˇc Computing. Cambridge Univ. Press, 2007.

9. Fruhwirth R. et al. Data Analysis Techniques for High-Energy Physics. Cambridge Univ. Press,
2000.

10. Lebedev A., Ososkov G. LIT Track Propagation for CBM. CBM Note. Darmstadt, 2008;
https://www.gsi.de/documents/DOC-2008-Dec-182-1.pdf

11. Lebedev A. et al. Track Reconstruction and Muon Identiˇcation in the Muon Detector of the CBM
Experiment at FAIR // PoS. 2008. V.ACAT08, No. 068.

12. Intel R© 64 and IA-32 Architectures Software Developer's Manual. V. 1: Basic Architecture. 2009.

13. Gorbunov S. et al. Fast SIMDized Kalman Filter Based Track Fit // Comp. Phys. Commun. 2008.
V. 178. P. 374Ä383.

14. Intel R© Threading Building Blocks. http://www.threadingbuildingblocks.org/

15. GEANT Å Detector Description and Simulation Tool. CERN Program Library Long Writeup
W5013.

16. Bass S. A. et al. // Prog. Part. Nucl. Phys. 1998. V. 41. P. 255Ä370.

Received on November 26, 2009.


