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INTRODUCTION

The problem of CuO2 ground state in high temperature superconducting cuprate com-
pounds or how to introduce the quasiparticles in such a way that the calculated physical
quantities behave as the ones obtained in the experimental measurements is still open. A
classiˇcation of cuprate unusual physical properties leads to a generic (T, p) phase diagram,
in terms of temperature T and the hole concentration p in the CuO2 planes [1].

Present investigation is devoted to ˇnding the answer about the nature of quasiparticles
investigating the magnetic susceptibility χ. Many different techniques have been proposed
to investigate spin response of strongly correlated electron systems, one of those is CuO2

plane [1,2].
One of the main questions in constructing the theory of HTSC is about the correct form

for the dynamical spin susceptibility χ(q, ω). For ω = 0, i.e., static q-dependent spin
susceptibility has two limits: spatially uniform with q → 0 and the staggered one with
q → (π, π), which is the antiferromagnetic (AF) wave vector [1].
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A special interest presents the investigation of the static and uniform susceptibility χ =
χ(0, 0). It could be measured as macroscopic susceptibility χm [3Ä9] or indirectly through
Knight shift nuclear magnetic resonance (NMR) technique [10, 11] or through speciˇc heat
measurements [13Ä16]. Also, the measuring of the temperature T ∗ of the maximum value of
static spin susceptibility is very important [8, 10,11,17,18].

Concerning the experimental results of the hole doped La2−xSrxCuO4−y (LSCO)- and
YBa2C3O6+x (YBCO)-family parent compounds, one meets with difˇculties due to the dif-
ferent procedure of sample preparing. Since the value of the correlation length ξ of the AF
	uctuation is of the range of the interatomic distance, therefore considered strongly correlated
many-particle system is very sensitive to some short-range structural disorder, i.e., structural
defects such as impurities and vacancies [1]. In order to obtain intrinsic spin susceptibility
of hole doped CuO2 planes, one has to subtract hole-doping independent part in LSCO [4]
and Curie-like (Cg/T ) paramagnetic contribution, which characterizes isolated impurities and
defects in YBCO compounds [2Ä5].

The static uniform spin susceptibility was calculated in the framework of the Hubbard [19Ä
24], Heisenberg [25] and t−J [26Ä28] models. Qualitative agreement between theoretical and
experimental results for temperature and doping dependencies was found. The self-consistent
renormalization theory of spin 	uctuations [21] describes well experimental results for the
staggered part of the uniform spin susceptibility.

Among the theoretical investigations aimed at obtaining full form of χ(q, ω), one should
notice the semi-phenomenological MillisÄMonienÄPines (MMP) theory [29Ä33], which was
successfully applied for description of many experimental ˇndings. Also, there are a lot of
attempts to obtain χ(q, ω) microscopically. Very often microscopical ˇndings use either the
method of equations of motion for Green's functions (GF) [34Ä38] or Mori's memory function
method [39Ä43]. Early theoretical efforts were directed to ˇnd some universal form or scaling
function which connect χ, χmax, T ∗ and vacancy or impurity concentration x [2, 4, 44Ä46]
and in the high-temperature limit [47]. Using the Van Hove scenario, some theories were
able to qualitatively explain dependencies χ on x and T [23, 49Ä52]. Numerical cluster
calculations in the framework of t − J or two-band Hubbard model [53Ä55] had success in
obtaining form of the dependencies of the chemical potential μ on hole concentration and T
similar to the ones obtained in [56Ä61].

In the CuO2 planes of LSCO compounds for low Sr content, carriers are holes, while
for large x they are electrons [7]. It was conˇrmed by corresponding change of Hall co-
efˇcient sign from positive to the negative one and by the doping evolution of the Fermi
surface form [1, 62], as also was obtained from ARPES experiments [58Ä61] and ED
calculations [53Ä55].

In the proposition that the chemical potential is close to the Van Hove singularity in the
quasiparticle DOS, a lot of different DOS models were considered [23, 48Ä52]. There was
obtained satisfactory description of the experimental results of the temperature dependence
macroscopic spin susceptibility [23,48] or Knight shift [26,49,51].

In the NMR Knight shift experiments [10, 11], one comes to conclusion that there is
no evidence for Van Hove singularity in DOS. There were established linear relations be-
tween spin susceptibility χm and respectively 89Y Knight shift in YBCO [10] and 63Cu
Knight shift in LSCO [11] compounds. Monotonic behaviour of χ(x) on doping x was also
found. However, one should note that the samples were not in the overdoped phase and
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also that during the NMR measurements they were in	uenced by high magnetic ˇelds (well
above 10 T).

Recently, in [62] band-structure of the t − J model in the normal and superconducting
states of the paramagnetic phase was profoundly investigated. We extent the research in
this paper taking the external magnetic ˇeld into consideration. Main goal of the present
investigation is to derive the corresponding expression for χ = χ(0, 0) in the t − J model
with the correct band-dispersion energy spectrum [62]. To get which interaction between
quasiparticles is included through the renormalization of their energies caused by AF spin
	uctuations. Renormalization of quasiparticle energy also changes the uniform and static spin
susceptibility.

Our paper is organized as follows. In the next section, we write the t − J model using
the Hubbard operators formalism and obtain the corresponding Green's function (GF). In
Sec. 2 we calculate the energy-dispersion relations, similar as it was done in [62]. Section 3
is devoted to calculation of the static and uniform spin susceptibility. Section 4 contains
numerical results and discussions. Our conclusions can be found at the end of the paper.

1. MODEL HAMILTONIAN AND GREEN'S FUNCTION

We intend to calculate the spin response of a strongly correlated electron system to a
uniform magnetic ˇeld. So, we consider an effective t − J model for the CuO2 plane
perturbated with the Zeeman interaction

H h
t−J = Ht−J + Hh, (1)

with the t − J Hamiltonian written in the standard notation [1,62]

Ht−J =
∑

〈i,j〉,σ
tij(1 − niσ̄)c+

iσcjσ(1 − njσ̄) +
∑
〈i,j〉

Jij

(
SiSj −

1
4
ninj

)
, (2)

where σ̄ = −σ and the Zeeman's Hamiltonian in the external magnetic ˇeld h = (0, 0, h) is

Hh = −h
∑

i

μz
i , (3)

where μz
i = −gμ

B
Sz

i is the z-component of magnetic moment with gyromagnetic (Land
e)
factor g and Bohr magneton μ

B
. In the Hubbard operator representation Xαβ

i = |iα〉〈iβ|
which preserves site no double occupancy constraint, i.e., X00

i +
∑

σ Xσσ
i = 1, one has

ni =
∑

σ

Xσσ
i , Sz

i =
1
2
σ(niσ − niσ̄) =

1
2

∑
σ

σXσσ
i , Xσ0

i = c+
iσ(1 − niσ̄). (4)

Considered Hamiltonian (1) takes the following form [62]:

H h
t−J =

∑
iσ

ξh
iσXσσ

i +
∑

i�=j,σ

tij Xσ0
i X0σ

j +
1
4

∑
i�=j, σ

Jij(Xσσ̄
i X σ̄σ

j − Xσσ
i X σ̄σ̄

j ), (5)

where ξh
iσ = εh

dσ − μ and εh
dσ = εd + μ

B
hσ is the energy of the hole with spin σ in the

magnetic ˇeld h. The exchange integral for the nearest neighbors (n.n.) is Jij = J and
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zero in other cases, tij = t and tij = t′ are respectively the hopping parameters for the next
neighbors (n.n.) and the next to the nearest neighbors (n.n.n.) sites i, j on a two-dimensional
(2D) square lattice and μ is the chemical potential.

The main goal of the present investigation is calculation of the static spin susceptibility
χ for strongly correlated electronic system in a uniform static magnetic ˇeld h = (0, 0, h).
Using the deˇnition of the average magnetic moment or magnetization as Mh

z = N〈μh
z 〉, or

equivalently Mh
z = −∂〈Hh

t−J〉/∂h, where N is number of the 2D lattice site, one has the
spin susceptibility as the zero ˇeld limit of derivation χ = (∂Mh

z /∂h)h→0.
As one can see, to obtain static spin susceptibility χ, one should ˇrst calculate spin-

dependent on-site occupation number nh
iσ which is

nh
iσ = 〈Xσσ

i 〉h = 〈Xσ0
i X0σ

i 〉h, (6)

i.e., one should calculate the following anticommutator Green's function:

〈〈X0σ
i (t); Xσ0

j (t′)〉〉 = −iΘ(t− t′)〈[X0σ
i (t), Xσ0

j (t′)]+〉, (7)

where we have chosen Zubarev's general formulation [63].

2. QUASIPARTICLE DISPERSION

As analytical tools, we use the projection method in the GF equation of motion [62,63]

ω〈〈X0σ
i |Xσ0

j 〉〉ω = 〈[X0σ
i , Xσ0

j ]+〉 + 〈〈Ziσ |Xσ0
j 〉〉ω, (8)

where 〈〈X0σ
i |Xσ0

j 〉〉ω is the Fourier transform of GF (7), the anticommutator of the operators
A and B is [A, B]+ = AB+BA and the equilibrium average value of an operator A is deˇned
as 〈A〉 = Tr{exp (−βHt−J)A}/Z with canonical partition function (or ®Zustandssumme¯)
as trace (Tr) in the energy representation of the operator ®exp (−βHt−J )¯. In the projection
method one extracts the main linear part after scattering in the equation of motion for transition
described with X0σ

i , which can be analytically described with the following procedure [62]:

Ziσ = [X0σ
i , Hh

t−J ] =
∑

l

Eh
ilσX0σ

l + Zir
iσ. (9)

From the projection condition 〈[Zir
iσ, Xσ0

j ]+〉 = 0, one obtains the ®frequency matrix¯

Eh
ijσ =

〈[[X0σ
i , Hh

t−J ], Xσ0
j ]+〉

Q
, (10)

whose spatial and temporal Fourier transformation will give energy band dispersion Eq(ω).
In the equation of motion for the Hubbard operator X0σ

i(
i
d

dt
− ξh

iσ

)
X0σ

i = −
∑
lσ′

tilBiσσ′X0σ′

l +
1
2

∑
lσ′

Jil(Blσσ′ − δσσ′)X0σ′

i , (11)

appear Bose-like Hubbard operators [62]

Biσσ′ = Qσ
i δσσ′ + X σ̄σ′

i , (12)



Pauli Spin Susceptibility in the t−J Model 797

which describe hole scattering on charge (or kinematics interactions)

Qσ
i = X00

i + Xσσ
i = 1 − ni

2
+ σSz

i , (13)

and spin 	uctuations (or exchange interactions) X σ̄σ
i = Sσ̄

i . Like in Hubbard I approxima-
tion, we further neglect densityÄdensity charge 	uctuations, but we keep spin correlations
introducing spin correlation functions for the n.n. χ1s = 〈SiSi+a1〉 and for the n.n.n. lat-
tice sites χ2s = 〈SiSi+a2〉, where n.n. describe a1 = (±ax,±ay) and n.n.n. describe
a2 = ±(ax ± ay) radius vectors. For the paramagnetic phase, we have 〈Sz

i 〉 = 0 and

also 〈Qσ
i 〉 = 〈Qσ̄

i 〉 ≡ Q = 1 − n/2, where n = 〈ni〉 = N−1
∑
iσ

〈Xσσ
i 〉 is the average

hole on-site occupation number. Using the common representation for the spin products

SlSj = Sz
l Sz

j +
1
2

∑
σ

Sσ
l Sσ̄

j , one has

〈BlσσQσ
j + Blσσ̄Xσσ̄

j 〉 = 〈SlSj〉 + 1 − 〈nj〉 +
〈nl〉〈nj〉

4
. (14)

In such a way we obtain the following elements of the ®frequency matrix¯:

E h
ijσ = δij(ξh

iσ + δμ) + (1 − δij)Ẽijσ , (15)

with diagonal and

ξh
iσ + δμ =

{
ξh
iσQ +

∑
l

til〈X σ̄0
i X0σ̄

l 〉 +
1
2

∑
l

Jil

(
〈SlSi〉 −

1
2
〈nj〉 +

1
4
〈nl〉〈nj〉

)}
/Q,

(16)
next to them

Ẽijσ =
{

tij

(
〈SiSj〉 + 1 − 〈nj〉 +

1
4
〈ni〉〈nj〉

)
+

1
2
Jij〈X σ̄0

j X0σ̄
i 〉

}
/Q (17)

matrix elements. Further we perform the spatial Fourier transformations of the upper corre-
lation functions

〈X σ̄0
i X0σ̄

l 〉 =
1
N

∑
k

nkσ̄ eikRil , nkσ̄ = 〈X σ̄0
k X0σ̄

−k〉,
(18)

niσ = 〈Xσσ
i 〉 = 〈Xσ0

i X0σ
i 〉 =

1
N

∑
k

nkσ

and ∑
l

til〈X σ̄0
i X0σ̄

l 〉 =
1
N

∑
k

t(k)nkσ̄, t(k) = 4tγ(k) + 4t′γ ′(k), (19)

with γ(q) = [cos (axqx) + cos (ayqy)]/2 and γ ′(q) = cos (axqx) cos (ayqy). As we consider
only n.n. exchange interactions, one has

1
2

∑
l

Jil〈S lS i〉 =
1
2
J

∑
a1

〈S iS i+a1〉 = 2J χ1s. (20)
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In q-representation one obtains the following GF:

〈〈X0σ|Xσ0〉〉hq, ω =
Q

ω − Eh
qσ

=
Q

ω − (Ẽqσ + ξ̃ h
iσ)

. (21)

As in [62], the quasiparticle energy Ẽkσ is renormalized due to the kinematic ε(k) = t(k),
bonding between it and exchange εs(k) = 4tγ(k)χ1s + 4t′γ′(k)χ2s and the net exchange
interaction (∝ J) as follows:

Ẽkσ = −Qε(k) − εs(k)
Q

− 2J

N
∑
q

γ(k− q)
Q

nqσ̄. (22)

Within the model used in [62], the static spin correlation functions which appear in the
deˇnition of εs(k) are respectively

χ1s = 〈SiSi+a1〉 =
1
N

∑
q

γ(q)〈SqS−q〉, (23)

and

χ2s = 〈SiSi+a2〉 =
1
N

∑
q

γ ′(q)〈SqS−q〉, (24)

where 〈SqS−q〉 = (πωs/2)χs(q). Here q-dependent part of spin-	uctuation susceptibil-
ity [62] is

χs(q) =
χ0

1 + ξ2 [1 + γ(q)]
, (25)

where ξ is the characteristic AF correlation length, spin-	uctuation energy is ωs � J and χ0

is some normalization parameter [62].
The renormalized one-particle on-site spin-dependent energies are

ξ̃ h
iσ = ξ h

iσ + δμσ,

where the chemical potential shift is

δμσ =
1
N

∑
q

t(q)
Q

nqσ̄ − 2J

Q

(
1
2
〈nj〉 − χ1s −

1
4
〈nl〉〈nj〉

)
. (26)

In the upper formulae we should take nqσ̄ = nqσ ≡ nq, which means that Ẽkσ = Ẽkσ̄ ≡ Ẽk

and δμσ = δμσ̄ ≡ δμ, since these quantities relate to the paramagnetic phase in the absence
of the external magnetic ˇeld.

3. QUASIPARTICLE SPIN SUSCEPTIBILITY

As one can see in GF (21), the only dependence on magnetic ˇeld h and on the spin
direction σ is contained in the on-site hole energy ξ h

iσ . This means that in the lowest order, the
effect of an external static uniform magnetic ˇeld is to shift the relative energy distributions
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of the up and down spins. So, we have different on-site occupation numbers for spin up and
down, but our many-particle system of holes will reach an equilibrium in such a manner that
their Fermi levels (or the renormalized chemical potential μ − δμσ) will be the same.

For on-site spin and ˇeld-dependent occupation numbers we have

nh
σ = 〈Xσσ

i 〉h = 〈Xσ0
i X0σ

i 〉h =
1
N

∑
k

〈Xσ0X0σ〉hk =
1
N

∑
k

1
2π

+∞∫
−∞

dω〈Xσ0X0σ〉hk, ω,

(27)
i.e., according to the general receipt of the GF spectral representation [63] we have

nh
σ =

1
N

∑
k

1
2π

+∞∫
−∞

dω
−2

eβω + 1
Im〈〈Xσ0|X0σ〉〉hk, ω =

1
N

∑
k

+∞∫
−∞

dω
Q

eβω + 1
δ(ω − Ẽh

k),

(28)
with β = 1/(k

B
T ). In such a way, in the magnetic ˇeld h we obtain the following expression

for the spin σ-dependent on-site occupancy

nh
σ =

1
N

∑
k

nh
kσ =

1
N

∑
k

Q

1 + exp [β(Ẽk + ξ̃ h
iσ)]

, (29)

and the magnetization in a uniform magnetic ˇeld h is Mh = −gμ
B
N (nh

↑ − nh
↓)/2. Further

one should calculate derivative on h of the Mh to obtain the uniform and static susceptibility

χh
0 =

(
∂Mh

∂h

)
= N g μ

B

∂

∂h

(nh
↓ − nh

↑)
2

. (30)

Making the derivative on h of the nh
σ, one gets

∂ nh
σ

∂h
=

1
N

−σgμ
B

k
B
T

Q
∑
k

exp [β(Ẽk + ξ̃h
iσ)]

{1 + exp [β(Ẽk + ξ̃h
iσ)]}2

, (31)

which including (29) and (30) gives the following expression for the uniform and static spin
susceptibility in the uniform magnetic ˇeld h = (0, 0, h) in a paramagnetic phase:

χh
0 =

gμ2
B

k
B
T

∑
kσ

[
nh
kσ − (nh

kσ)2

Q

]
, (32)

with

nh
kσ − (nh

kσ)2/Q =
βQ

2[1 + cosh(βx)]
=

βQ

(1 + eβx)(1 + e−βx)
, (33)

where x = Ẽk +δμ−μ+μσhσ+εd and spin σ and ˇeld h-dependent on-site hole occupancy
is given in Eq. (29).

For large sample (N → ∞), one can pass in the upper expressions on the continual

limit
1
N

∑
k

. . . =⇒
∫

1stB.Z

. . . dk/(2π)2, where one integrates over the ˇrst Brillouin zone
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(1st B.Z.). In the zero-ˇeld limit, one ˇnds the static and uniform spin susceptibility in the
paramagnetic phase

χ0 = (2μB )2
∫

1st B.Z

dk
(2π)2

(
− dnk

dẼk

)
= (2μB )2

∫
1stB.Z

dk
(2π)2

(
dnk

dμ

)
= 2μ2

B

d

dμ
N, (34)

where we use g � 2. Total number of the holes (in dependence of CuO2 plane hole doping)
which in canonical ensemble ˇx the Fermi-level position is given by

N =
∫

1stB.Z

dk
(2π)2

nk =
∫

1stB.Z

dk
(2π)2

Q

1 + exp [β(Ẽk + δμ − μ)]
, (35)

where the quasiparticle energy Ẽk is given by (22) and the chemical potential shift is given
by (26), taking into account the remark below Eq. (26).

4. NUMERICAL RESULTS AND DISCUSSION

In this section we present numerical results, namely, the chemical potential μ(p), uniform
static quasiparticle spin susceptibility χ0(p) (at zero and ˇnite temperatures) and the energy
dispersion and FS shape evolution with hole doping p. To perform the numerical calculations,
we have chosen the following parameter values: t′ = −0.3 and J = 0.4. The n.n. hoping
parameter t was chosen as the energy unit. In order to get the self-consistent solution, 64×64
cluster was used. The energy mesh was less than 0.001.

In Fig. 1, we plot dependencies μ(p) and χ0(p) at two temperatures T = 0 and T =
0.3 t > 1000 K. The zero temperature dependencies of the chemical potential (solid lines) and
the susceptibility (dot-dashed line) are linear functions on the hole doping. We obtain that μ
does not depend on T in the considered doping interval. For small hole doping p < 0.05,
one can see only weak increase of μ as T increases from 0 to 0.3 t. In the ED numerical
studies [53, 54] in the hole over doped phase (0.15 < p), it was obtained that μ does not
depend on T . Under assumption that the chemical potential is T -independent and that DOS
peak is narrow with rectangular shape [48], one successfully describes many of the normal
state properties of HTSC compounds on qualitative level. It gives some support that our
result about weak temperature independence of μ is correct.

Fig. 1. Doping dependence of the chemical potential μ

at temperatures T = 0 (solid line) and T = 0.3 (in units

of t) (solid line with circles) is plotted in the ˇgure. The
susceptibility χ vs doping at T = 0 is plotted by dot-

dashed line and T = 0.3 case is shown by dot-dashed
line with squares. The susceptibility χ is in units of 2μ2

B
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One of the basic features which follows from the experiments is an increase of the
macroscopic χm in the hole underdoped phase and χm decreases in the hole overdoped
phase, which is better seen in the LSCO compounds [6, 7, 48] rather than in the YBCO
compounds [3, 5], where the overdoping phase is very short. Existence of the maxima in
the χm(p) dependence can be concluded from Sommerfeld's γ parameter dependence on p
in the electronic speciˇc heat measurements [1, 13Ä16], and also from the numerical results
obtained in the framework of Hubbard model [55]. However, in some experiments performed
in YBCO [10, 11] and LSCO [11, 12] compounds, one ˇnds a linear scaling between NMR
Knight shifts 89K (or 63K) in the magnetic ˇeld of about H = 10 T and χm at about H = 1 T
and Knight shifts are monotone increasing functions on hole doping p. In other words, one
does not ˇnd maxima in the K(p) and χ(p) dependencies. Generally, one should be careful
extracting inherent characteristics of the quasiparticles in CuO2 without oxygen vacancy and
different inhomogeneity contributions. From our numerical results it follows that χ0 decreases
with hole doping p increase which is in agreement with theoretical results [28] for p > 0.05
(where our approximations are available for paramagnetic phase).

Looking after the experimental results about χm with maxima in dependence on p, one
can conclude that our numerical results for χ(p) and μ(p) have the form as one could expect
for hole overdoped phase.

Fig. 2. 3D and contour plot of the hole dispersion is plotted for hole concentration: 0.3 (a), 0.5 (b),
0.7 (c)
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On the other hand, the staggered part χQ of the static spin susceptibility decreases and
shifts to the higher energies upon hole doping, see, for example, [1, 2, 20, 26]. Uniform
static quasiparticle part χ0 even gets enhanced with Stoner exchange, and is approximately
T -independent [19, 21], what is in agreement with our results presented in Fig. 1. As it
follows from results of [21], the origin of the temperature dependence of χm is the effect of
the AF spin 	uctuations, which is described by χQ. The same conclusion also comes out
from results of investigations of the relaxation of a rare-earth impurity ion, where one can
explain the T dependence of the crystal ˇeld linewidth as the effect of the spin 	uctuations,
described with the staggered spin susceptibility χQ [64Ä68]. Although we should notice that
there is also another point of view, that χQ describes charge density wave instability of
the ground state [26]. In the equation for uniform spin susceptibility, in	uence of the AF
spin 	uctuations is included in the corresponding renormalization of the quasiparticle energy
spectrum Ẽq, so one can understand strong increase of χ0 at low-hole doping and in the
high-temperature regime, presented in Fig. 1 as effect of the AF spin 	uctuations.

In Fig. 2, aÄc, we present evolution of the Fermi surface (FS) and the quasiparticle energy
dispersion on the hole doping. In the top contour plots one can see transformation of the 2D
FS from four pocket-like centered at M(π, π) points of the B.Z. for small doping p < 0.5
to the electron-like FS centered at Γ(0, 0) point of B.Z. for large doping p > 0.5. However,
from the experimental results [59], FS shape transforms at p = 0.22, similar to the numerical
results (for p < 0.3) in the framework of the Hubbard model [55]. This point could indicate
that t − J model is not an adequate model for quantitative description of real materials.

CONCLUSIONS

In the framework of t − J model we have investigated hole concentration dependencies
of the chemical potential μ and static spatially uniform spin susceptibility χ0 in the CuO2

plane, the common block of the HTSC cuprate compounds. We used the projection method
technique of the GF equations of motion. In the considered case Pauli-like itinerant sus-
ceptibility presents inherent quasiparticle part of the magnetic response. Antiferromagnetic
	uctuations and strong correlations were included in the mean-ˇeld approximation method
used to obtain corresponding renormalization of the quasiparticle energies. For small doping
at high temperature, contribution of the AF 	uctuations became dominant, which led to strong
increase of the quasiparticle magnetic response.

Evolution of the FS shape had no essential effect on the inherent quasiparticle uniform
static susceptibility. One could expect that FS transformation will lead to a strong in	uence on
the staggered part of magnetic response, what can explain temperature and doping dependence
of the static spin susceptibility. However, in order to better ˇt experimental results, one should
repair hole concentration dependencies obtained in the framework of the t−J model probably
using the Hubbard model as the more adequate one for the description of high-temperature
superconductors.
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