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COHERENT STATES FOR A QUANTUM PARTICLE
ON A MéOBIUS STRIP1

D. J. Cirilo-Lombardo2

Joint Institute for Nuclear Research, Dubna

The coherent states for a quantum particle on a Méobius strip are constructed and the relation with
the natural phase space for fermionic ˇelds is shown. The explicit comparison of the obtained states
with those obtained in the previous works, where the cylindrical quantization was used and the spin 1/2
was introduced by hand, is given.
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INTRODUCTION

Coherent States (CS) have attracted much attention in many branches of physics [1].
In spite of their importance, the theory of CS when the conˇguration space has nontrivial
topology is far from complete. The CS for a quantum particle on a circle [2] and a sphere have
been introduced very recently, and also the case of the torus has been treated. Although in all
these works the different CS constructions for the boson case are practically straighforward,
the simple addition by hand of spin 1/2 to the angular momentum operator J for the femionic
case into the corresponding CS remains obscure and non-natural. The question that naturally
arises is: Is there exist any geometry for the phase space where the CS construction leads
precisely to a fermionic quantization condition? The purpose of this paper is to demonstrate
the positive answer to this question showing that the CS for a quantum particle on the Méobius
strip geometry is the natural candidate to descibe fermions exactly as the cylinder geometry
for bosons.

1Partial results of the presented at the conference Path Integrals: New Trends and Perspectives, MPISC, Dresden,
Germany (2007).

2E-mail: diego@theor.jinr.ru
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1. ABSTRACT COHERENT STATES

The position of a point on the Méobius strip geometry can be parametrized as P0 =
(X0, Y0, Z0)P0 = (X0 + X1, Y0 + Y1, Z0 + Z1). The coordinates of P0 describe the central
cylinder (generated by the invariant ˇber of the middle of the strip): Z0 = l, X0 = R cos ϕ,
Y0 = R sin ϕ. We use the standard spherical coordinates: R, θ, ϕ with dΩ = R2(dθ2 +
sin2 θdϕ), and r is the secondary radius of the torus.

The coordinates of P1 (the boundaries of the Méobius band) are the coordinates of P0 plus
Z1 = r cos θ, X1 = r sin θ cos ϕ, Y1 = r sin θ sin ϕ. The weight of the band is obviously
2r, then our space of phase is embedded into of the torus: X = R cos ϕ + r sin θ cos ϕ,
Y = R sin ϕ + r sin θ sin ϕ, Z = l + r cos θ. The important point is that the angles are
not independent in the case of the Méobius band and are related by the following constraint:

θ =
ϕ + π

2
.

In order to introduce the CS for a quantum particle on the Méobius strip geometry, we
follow the BarutÄGirardello construction and we seek the CS as the solution of the eigenvalue
equation X |ξ〉 = ξ |ξ〉 with complex ξ. Taking R = 1 and inserting the constraint into
the parametrization of the torus, we obtain the parametrization of the band: X = cos ϕ +
r cos (ϕ/2) cos ϕ, Y = sin ϕ + r cos (ϕ/2) sin ϕ, Z = l + r sin (ϕ/2) .

Taking account on the initial condition, and the transformations: X ′ = e−ZX, Y ′ = e−ZY,
Z ′ = Z, ˇnally

ξ = exp[− (l + r sin (ϕ/2)) + iϕ] (1 + r cos (ϕ/2)) .

Inserting the above expression into the expansion of the CS in the j basis, the CS in explicit
form is obtained:

|ξ〉 =
∞∑

j=−∞
ξ−je−

j2

2 |j〉 =
∞∑

j=−∞
el′j−iϕje−

j2

2 |j〉 ,

where l′ ≡ (l + r sin (ϕ/2)) − ln (1 + r cos (ϕ/2)) − iϕ. From the above expression, the

ˇducial vector is |1〉 =
∞∑

j=−∞
e−

j2

2 |j〉, then

|ξ〉 =
∞∑

j=−∞
e−(ln ξ) ̂J |1〉 . (1)

As is easily seen, the vector |1〉 is |0, 0〉r=0 in the (l, ϕ) parametrization. This fact permits us to
rewrite expression (1) as |l, ϕ〉 = exp {[(l+r sin(ϕ/2))− ln(1+r cos(ϕ/2))− iϕ]j}|0, 0〉r=0.
The non-ortogonality formulas (overlap) are explicitly derived1:

〈ξ |η〉 =
∞∑

j=−∞
(ξ∗η)−j e−j2

= Θ3

(
i

2π
ln (ξ∗η) | i

π

)
,

〈l, ϕ |h, ψ〉 = Θ3

(
i

2π
(ϕ − ψ) − l′ + h′

2
i

π
| i

π

)
.

1The normalization as a function of Θ3: 〈ξ |ξ〉 = Θ3

(
i

π
ln |ξ| | i

π

)
or 〈l, ϕ |l, ϕ〉 = Θ3

(
il′

π
| i

π

)
.
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2. THE PHYSICAL PHASE SPACE AND THE NATURAL QUANTIZATION

From the expressions obtained in the previous section and Ĵ |j〉 = j |j〉 we notice that
the normalization, for the cylinder [2] (boson case) that is ϕ-dependent, now depends on ϕ
through l′ ≡ (l + r sin (ϕ/2)) − ln (1 + r cos (ϕ/2)). As Ĵ |l, ϕ〉 = j |l, ϕ〉, then

〈ξ| Ĵ |ξ〉
〈ξ |ξ〉 = l′ + 2π sin (2l′π)

∞∑
n=1

e−π2(2n−1)(
1 + e−π2(2n−1)e2iπl′

) (
1 + e−π2(2n−1)e−2iπl′

) ,

where the well-known identities for Θ functions were introduced. Notice the important
result coming from the above expression: the fourth condition required for the CS [3],
namely 〈Ĵ〉 = l, demands not only l to be integer or semi-integer (as the case for the circle
quantization), but also that ϕ = (2k + 1)π leading a natural quantization similar as the charge
quantization in the Dirac monopole. Precisely, this condition over the angle ˇxes the position
of the particle in the internal or external border of the Méobius band, that for r = 1/2 is
s = ±1/2 how it is required to be.

In order to compare our case with the CS constructed in [2], we consider the existence of
the unitary operator U ≡ eiϕ obeying [J, U ] = U, then U |j〉 = |j + 1〉. The same average as
before for the Ĵ operator is

〈ξ|U |ξ〉
〈ξ |ξ〉 = e−

1
4 eiϕ Θ2 (il′/π | i/π)

Θ3 (il′/π | i/π)
= e−

1
4 eiϕ Θ3 (l′ + 1/2 | iπ)

Θ3 (l′ | iπ)
, (2)

where in the last equality the relation Θ2 (ν) = exp
[
iπ

(
1
4
τ + ν

)]
Θ3

(
ν +

τ

2

)
was in-

troduced. As in [2] we also can perform the relative average for the operator U in order
to eliminate the factor e−

1
4 , then at the ˇrst order expression (2) coincides with the unitary

circle. It is clear that the denominator in quotient (2) (average with respect to the ˇducial
CS) serves to centralize the expression of the numerator. However, the claim that U is the
best candidate for the position operator is still obscure and requires a special analysis that we
will give elsewhere.

3. THE DYNAMICS

To study the dynamics in this nontrivial geometry, we construct the nonrelativistic La-
grangian and the corresponding Hamiltonian:

H =
1
2

{
.
ϕ

2
[
(1 + r cos (ϕ/2))2 − r2

4
cos ϕ

]
+ L2

0

}
.

Now, Ĥ |E〉 = E |E〉. If |E〉 = |j〉, imposing the fourth CS requirement [3], we have

ϕ = (2k + 1)π and the expression for the energy takes the form: E =
2j2

4 + r2
+

L2
0

2
.

From the dynamical expressions given above, it is not difˇcult to make the following
remarks:

1) the Hamiltonian is not a priori T invariant. The HMS is T invariant iff TL0 = −L0:
the variable conjugate to the external momenta l changes under T as J is manifesting with
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this symmetry the full inversion of the motion of the particle on a Méobius strip (evidently
this is not the case of the motion of the particle on the circle);

2) the distribution of energies is Gaussian: from the Bargmann representation φj (ξ∗) ≡
〈ξ| E〉 = (ξ∗)−j e−

j2
2 , and by using the approximate relation from the deˇnition of the

Θ function1, the expression for the distribution of energies can be written as

|〈j|ξ〉|2
〈ξ|ξ〉 ≈ 1√

π
e−(j−l′)2

.

It is useful to remark here that, when ϕ = (2k + 1)π, l = l′, this expression coincides exactly
in form with the boson case given in [2], but now l is semi-integer valuated.
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1Θ3

(
il′

π
| i

π

)
= e(l′)2√π

(
1 + 2

∞∑
n=1

e−π2n2
cos (2l′πn)

)
≈ e(l′)2√π.


