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REMARKS TO THE STANDARD SCHEME (THEORY)
OF NEUTRINO OSCILLATIONS. CORRECTED SCHEME

OF NEUTRINO OSCILLATIONS
Kh. M. Beshtoev1

Joint Institute for Nuclear Research, Dubna

In the standard theory of neutrino oscillations it is supposed that physically observed neutrino states
νe, νμ, ντ have no deˇnite masses, that they are initially produced as a mixture of the ν1, ν2, ν3 neutrino
states (i.e., they are produced as a wave packet), and that neutrino oscillations are the real ones. Then, this
wave packet must decompose at a deˇnite distance into constituent parts and neutrino oscillations must
disappear. It was shown that these suppositions lead to violation of the law of energy and momentum
conservation. An alternative scheme of neutrino oscillations obtained within the framework of particle
physics has been considered, where the above-mentioned shortcomings are absent, the oscillations of
neutrinos with equal masses are the real ones, and the oscillations of neutrinos with different masses
are the virtual ones. Expressions for probabilities of neutrino transitions (oscillations) in the alternative
(corrected) scheme are given.

‚ ¸É ´¤ ·É´μ° É¥μ·¨¨ μ¸Í¨²²ÖÍ¨° ´¥°É·¨´μ ¶·¥¤¶μ² £ ¥É¸Ö, ÎÉμ ´ ¡²Õ¤ ¥³Ò¥ ´¥°É·¨´´Ò¥
¸μ¸ÉμÖ´¨Ö νe, νμ, ντ ´¥ ¨³¥ÕÉ μ¶·¥¤¥²¥´´μ° ³ ¸¸Ò ¨ ÎÉμ μ´¨ ¸· §Ê ·μ¦¤ ÕÉ¸Ö ± ± ¸³¥Ï ´´Ò¥
´¥°É·¨´´Ò¥ ¸μ¸ÉμÖ´¨Ö ν1, ν2, ν3 (É.¥. ·μ¦¤ ÕÉ¸Ö ± ± ¢μ²´μ¢Ò¥ ¶ ±¥ÉÒ) ¨ ´¥°É·¨´´Ò¥ μ¸Í¨²²Ö-
Í¨¨ Ö¢²ÖÕÉ¸Ö ·¥ ²Ó´Ò³¨. ’μ£¤  ÔÉ¨ ¢μ²´μ¢Ò¥ ¶ ±¥ÉÒ ´  μ¶·¥¤¥²¥´´ÒÌ · ¸¸ÉμÖ´¨ÖÌ μÉ ¨¸ÉμÎ´¨± 
¤μ²¦´Ò · §² £ ÉÓ¸Ö ´  ¸μ¸É ¢´Ò¥ ±μ³¶μ´¥´ÉÒ ¨ ´¥°É·¨´´Ò¥ μ¸Í¨²²ÖÍ¨¨ ¤μ²¦´Ò ¨¸Î¥§ ÉÓ. �μ-
± § ´μ, ÎÉμ ÔÉ¨ ¶·¥¤¶μ²μ¦¥´¨Ö ¶·¨¢μ¤ÖÉ ± Éμ³Ê, ÎÉμ § ±μ´ ¸μÌ· ´¥´¨Ö Ô´¥·£¨¨ ¨ ¨³¶Ê²Ó¸  ¢
¶·μÍ¥¸¸ Ì ¸ ÊÎ ¸É¨¥³ ´¥°É·¨´μ ´¥ ¢Ò¶μ²´Ö¥É¸Ö. �·¥¤² £ ¥É¸Ö  ²ÓÉ¥·´ É¨¢´ Ö ¸Ì¥³  ´¥°É·¨´´ÒÌ
μ¸Í¨²²ÖÍ¨°, · §· ¡μÉ ´´ Ö ¢ · ³± Ì Ë¨§¨±¨ Î ¸É¨Í, ¢ ±μÉμ·μ° μÉ¸ÊÉ¸É¢ÊÕÉ Ê± § ´´Ò¥ ´¥¤μ¸É É±¨.
‚ ÔÉμ° ¸Ì¥³¥ μ¸Í¨²²ÖÍ¨¨ ´¥°É·¨´μ ¸ μ¤¨´ ±μ¢Ò³¨ ³ ¸¸ ³¨ Ö¢²ÖÕÉ¸Ö ·¥ ²Ó´Ò³¨,   μ¸Í¨²²ÖÍ¨¨
´¥°É·¨´μ ¸ · §´Ò³¨ ³ ¸¸ ³¨ Å ¢¨·ÉÊ ²Ó´Ò³¨. �·¨¢μ¤ÖÉ¸Ö ¢Ò· ¦¥´¨Ö ¤²Ö ¢¥·μÖÉ´μ¸É¥° ´¥°É·¨´-
´ÒÌ ¶¥·¥Ìμ¤μ¢ (μ¸Í¨²²ÖÍ¨°) ¢ ÔÉμ°  ²ÓÉ¥·´ É¨¢´μ° (¨¸¶· ¢²¥´´μ°) ¸Ì¥³¥.

PACS: 14.60. Pq; 14.60.Lm

INTRODUCTION

The suggestion that in analogy with K0, K̄0 oscillations there could be neutrinoÄanti-
neutrino oscillations (ν → ν̄) was considered by Pontecorvo [1] in 1957. It was subsequently
considered by Maki et al. [2] and Pontecorvo [3] that there could be mixings (and oscillations)
of neutrinos of different 	avors (i.e., νe → νμ transitions). In the standard theory of neutrino
oscillations [4] it is supposed that physically observed neutrino states νe, νμ, ντ have no
deˇnite masses and that they are directly produced as a mixture of the ν1, ν2, ν3 neutrino
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states (as wave packets). Below, we discuss the consequences of these suppositions and then
an alternative scheme of neutrino oscillations constructed in the framework of particle physics
theory (or the quantum ˇeld theory) is considered.

We come to consideration of basic elements and shortcomings of the standard theory of
neutrino oscillations.

1. BASIC ELEMENTS OF THE STANDARD THEORY
OF NEUTRINO OSCILLATIONS

The standard theory of neutrino oscillations [4] was constructed in the framework of
quantum theory (mechanics) in analogy with the theory of K0, K̄0 oscillations. To simplify,
the case of two neutrinos is considered.

The mass Lagrangian of two neutrinos (νe, νμ) has the following form:

LM = −1
2

[
mνe ν̄eνe + mνμ ν̄μνμ + mνeνμ(ν̄eνμ + ν̄μνe)

]
≡

≡ −1
2
(ν̄e, ν̄μ)

(
mνe mνeνμ

mνμνe mνμ

) (
νe

νμ

)
, (1)

which is diagonalized by rotation through the angle θ and then this Lagrangian (1) transforms
into the following one (see Ref. [4]):

LM = −1
2

[m1ν̄1ν1 + m2ν̄2ν2] , (2)

where

m1,2 =
1
2

[
(mνe + mνμ) ±

(
(mνe − mνμ)2 + 4m2

νμνe

)1/2
]

,

and angle θ is determined by the following expression:

tan 2θ =
2mνeνμ

(mνμ − mνe)
, (3)

νe = cos θν1 + sin θν2, νμ = − sin θν1 + cos θν2. (4)

From Eq. (3) one can see that if mνe = mνμ , then the mixing angle is equal to π/4
independently of the value of mνeνμ .

The expression for time evolution of ν1, ν2 neutrinos (see (2), (4)) with masses m1 and
m2 is

ν1(t) = e−iE1tν1(0), ν2(t) = e−iE2tν2(0), (5)

where
E2

k = (p2 + m2
k), k = 1, 2.

If neutrinos are propagating without interactions, then
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νe(t) = cos θ e−iE1tν1(0) + sin θ e−iE2tν2(0),

νμ(t) = − sin θ e−iE1tν1(0) + cos θ e−iE2tν2(0).
(6)

Using the expression for ν1 and ν2 from (5), and putting it into (6), one can get the following
expression:

νe(t) =
[
e−iE1t cos2 θ + e−iE2t sin2 θ

]
νe(0) +

[
e−iE1t − e−iE2t

]
sin θ cos θνμ(0),

νμ(t) =
[
e−iE1t sin2 θ + e−iE2t cos2 θ

]
νμ(0) +

[
e−iE1t − e−iE2t

]
sin θ cos θνe(0). (7)

The probability that neutrino νe produced at the time t = 0 will be transformed into νμ at
the time t is an absolute value of amplitude νμ(0) in (7) squared, i.e.,

P (νe → νμ) =| (νμ(0) · νe(t)) |2=
1
2

sin2 2θ
[
1 − cos ((m2

2 − m2
1)/2p)t

]
, (8)

where it is supposed that p � m1, m2; Ek � p + m2
k/2p.

Besides, since νe, νμ, ντ neutrinos are superpositions of ν1, ν2, ν3, the νe, νμ, ντ neutrinos
are wave packets having widths. Then, these νe, νμ, ντ states (neutrinos) are unstable ones
and must decompose for the time Δt which is determined by the uncertainty relation [5, 6],

Δt ∼ Lcohe

c
, (9)

Lcohe
∼=

4E2
νΔx

Δm2
,

where Lcohe is coherence length on neutrino; c is the light velocity; Δx is the size of the
object, where the physically observed neutrino is produced; Δm2 is squared neutrino mass
differences (Δm2 → m2

ν2
− m2

ν1
or m2

ν3
− m2

ν1
).

2. REMARKS TO THE STANDARD THEORY OF NEUTRINO OSCILLATIONS

Now it is necessary to check: is it possible to prove main suppositions of the standard
theory of neutrino oscillations within the framework of the quantum ˇeld theory (or the
particle physics theory)?

1. The mass eigenstates are ν1, ν2, ν3 neutrino states, but not physically observed neutrino
states νe, νμ, ντ . And then the neutrinos νe, νμ, ντ are directly produced as superpositions of
the ν1, ν2, ν3 states (neutrinos).

This supposition violates the causality principle since at productions of νe, νμ, ντ neutrinos
they already know that they must be superpositions of the ν1, ν2, ν3 neutrinos.

One of the basic positions of the quantum ˇeld theory (or the particle physics theory) [5, 7]
is that particles must be produced in eigenstates, i.e., particles are produced in states with
a diagonal mass matrix. For example, we have two interactions: interaction with the lep-
ton number conservations (interaction with W, Z exchanges) and interaction with the lepton
number violations (hypothetical interaction which is described by the nondiagonal terms of
the CabibboÄKobayashiÄMaskawa matrices). What states will be produced? It is clear that
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in the ˇrst case the νe, νμ, ντ neutrinos will be produced and in the second case the ν1, ν2, ν3

neutrinos will be produced since they are eigenstates of the interactions which violate lepton
numbers. Why are the νe, νμ, ντ neutrinos produced, but we do not observe ν1, ν2, ν3 neu-
trino productions? Within the framework of the quantum ˇeld theory (or the particle physics
theory) it is possible only if the interaction with lepton number violations has time to pro-
duce the ν1, ν2, ν3 neutrinos, i.e., we do not observe productions of these neutrinos since the
probabilities of their productions are very small [8]. Then, after productions of the νe, νμ, ντ

neutrinos, since we cannot switch off the weak interaction which violated the lepton numbers,
they will be transformed into superpositions of the ν1, ν2, ν3 neutrinos. So, one can see that
within the framework of the quantum ˇeld theory (or the particle physics theory) there is no
possibility for direct production of particles in superposition states.

The same situation takes place in the hadron case, when in the strong interactions (where
strangeness is conserved) K0, K̄0 mesons (eigenstates) are produced. And then by the weak
interactions (where strangeness is violated) they are transformed to superpositions of the
K0

1 , K0
2 mesons (eigenstates of the weak interactions) and then oscillations take place [8, 9].

Now let us discuss other consequences of the standard theory of neutrino oscillations.
2. Since the νe, νμ, ντ neutrinos are directly produced as superpositions of the ν1, ν2, ν3

neutrinos (their mass matrix is nondiagonal), they cannot have deˇnite masses. Only ν1, ν2, ν3

neutrinos have deˇnite masses.
As a consequence of these suppositions, we cannot formulate the law of energy-momentum

conservation in a strict form in the processes with participation of these neutrinos (i.e.,
νe, νμ, ντ ).

And it is also supposed that oscillations between the νe, νμ, ντ neutrinos are real
oscillations.

However, computation with (1)Ä(4) has shown that νe, νμ masses are

mνe = m1 cos2 θ + m2 sin2 θ,
mνμ = m1 sin2 θ + m2 cos2 θ,

(10)

i.e., the νe, νμ neutrinos have deˇnite masses, which are expressed via the ν1, ν2 masses and
the mixing angle θ. It means that the supposition that the νe, νμ neutrinos have no deˇnite
masses is not conˇrmed. Then, if neutrino oscillations are real oscillations, i.e., there is a
real transition of the electron neutrino νe into the muon neutrino νμ (or tau neutrino-ντ ), the
neutrino x = μ, τ will decay to an electron neutrino plus something:

νx → νe + . . . (11)

As a result, we can get energy from vacuum, which is equal to the mass difference (if
mνx > mνe)

ΔE ∼ mνx − mνe . (12)

Then, again, this electron neutrino is converted into the muon neutrino, which decays again
and we get energy, etc. So, we have got a perpetuum mobile! Obviously, the law of energy
and momentum conservation in these processes is not fulˇlled.

It is necessary to stress that these suppositions are in contradiction with the fundamental
demand of the particle physics theory that the particles must have deˇnite masses and the law
of energy-momentum conservation must be fulˇlled in processes.
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3. The νe, νμ, ντ neutrinos are superpositions of the ν1, ν2, ν3 neutrinos and they are
produced as wave packets and must decompose, i.e., at distances L when

L > Lcohe, (13)

from the point of their productions the wave packets decompose to components and neutrino
oscillations will be absent.

Then, we must see ν1, ν2, ν3 neutrino states, but not the states of νe, νμ, ντ neutrinos.
Neutrinos are elementary particles. Within the framework of the elementary particle theory
the particles are produced as individual eigenstates of the corresponding interaction. We can
construct a wave packet as superposition of individual particles having a deˇnite width only
after their productions, but we cannot produce a wave packet as an elementary particle within
the framework of the quantum ˇeld theory (or the elementary particle theory).

It also means that the Solar neutrinos cannot reach the Earth as νe, νμ, ντ neutrino states.

Lcohe ∼
4E2

νΔx

Δm2
= 2.2 · 106 cm, (14)

where E = 7 MeV, Δm2 = 8.9 · 10−5 eV2, Δx = 10−12 cm (the neutrinos are produced
inside the nucleus). However, in experiments [10, 11] we see, namely, νe, νμ, ντ neutrino
states, but not ν1, ν2, ν3 neutrino states.

Without any doubt this standard theory requires a correction in order to get rid of the
above-mentioned defects. Below, we come to construction of a corrected scheme within the
framework of the quantum ˇeld theory (or the particle physics theory).

3. ALTERNATIVE SCHEME OF NEUTRINO OSCILLATIONS

In the framework of the particle physics theory (or the quantum ˇeld theory) [7] all
particles are stable ones or if they have widths, then they must decay in the states (particles)
with small masses. It is a requirement, which must be fulˇlled in the framework of particle
physics theory. If particles are wave packets, then these wave packets will decompose and
we cannot obtain stable long-life particles.

The only way to restore the law of energy-momentum conservation in processes of neutrino
oscillations is to work in the framework of particle physics (or the quantum ˇeld theory).
Then, these oscillations will be virtual if neutrinos have different masses and these oscillations
will proceed in the framework of the uncertainty relations.

So, the correct theory of neutrino oscillations can be constructed only into the framework
of the particle physics theory, where the conception of mass shell is present [7, 9, 12]. Besides,
every particle must be produced on its mass shell and it will be left on its mass shell while
passing through vacuum.

In the considered scheme of neutrino oscillations, constructed in the framework of the
particle physics theory, it is supposed (according to the experiments) that:

1) The physical observable neutrino states νe, νμ, ντ are eigenstates of the weak interaction
with W, Z0 exchanges. And, naturally, the mass matrix of νe, νμ, ντ neutrinos is diagonal,
i.e., the mass matrix of νe, νμ and νμ neutrinos has the following diagonal form (since these
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neutrinos are produced in the weak interactions, it means that they are eigenstates of these
interactions and their mass matrix must be diagonal):

⎛
⎝ mνe 0 0

0 mνμ 0
0 0 mντ

⎞
⎠ . (15)

Besides, all the available experimental results indicate that the lepton numbers le, lμ, lτ are
well conserved, i.e., the standard weak interactions (with W, Z0 bosons) do not violate the
lepton numbers.

2) Then, to violate the lepton numbers, it is necessary to introduce an interaction violating
these numbers. It is equivalent to introducing of the nondiagonal mass terms in the mass
matrix of νe, νμ, ντ neutrinos:

M(νe, νμ, ντ ) =

⎛
⎝ mνe mνeνμ mνeντ

mνμνe mνμ mνμντ

mντ νe mντ νμ mντ

⎞
⎠ . (16)

Diagonalizing this matrix [4]

M(νe, νμ, ντ ) = V −1M(ν1, ν2, ν2)V, (17)

we go to the ν1, ν2, ν3 neutrino mass matrix

⎛
⎝ mν1 0 0

0 mν2 0
0 0 mν3

⎞
⎠ , (18)

where V is neutrino mixings matrix V . Then, the vector state Ψ(νe, νμ, ντ ) of νe, νμ, ντ

neutrinos

Ψ(νe, νμ, ντ ) =

⎛
⎝ νe

νμ

ντ

⎞
⎠ (19)

is transformed into the vector state Ψ(ν1, ν2, ν2) of ν1, ν2, ν2 neutrinos

Ψ(νe, νμ, ντ ) = V Ψ(ν1, ν2, ν2), (20)

i.e., νe, νμ, ντ neutrinos are transformed into superpositions of ν1, ν2, ν2 neutrinos.
We can choose parameterization of this matrix V in the form proposed by Maiani [13],

then

V =

⎛
⎝ 1 0 0

0 cγ sγ

0 −sγ cγ

⎞
⎠

⎛
⎝ cβ 0 sβ exp (−iδ)

0 1 0
−sβ exp (iδ) 0 cβ

⎞
⎠

⎛
⎝ cθ sθ 0

−sθ cθ 0
0 0 1

⎞
⎠, (21)

where θ, β, γ and δ are angles of neutrino mixings and parameter of CP violation.
Exactly like the case of K0 mesons produced in strong interactions, when mainly K0, K̄0

mesons are produced, but not K1, K2 mesons. In the considered case, νe, νμ, ντ , but not
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ν1, ν2, ν3 neutrino states, are mainly produced in the weak interactions (this is so since the
contribution of the lepton numbers violating interactions to this process is too small).

3) Then, when the νe, νμ, ντ neutrinos are passing through vacuum, they will be converted
into superpositions of the ν1, ν2, ν3 owing to the presence of the interactions violating the
lepton number of neutrinos and will be left on their mass shells. And, then, oscillations of
the νe, νμ, ντ neutrinos will take place according to the standard scheme [4]. In the case of
two neutrino oscillations, we will obtain expressions equivalent to expressions (1)Ä(8), and
for the case of three neutrino oscillations, the common expression was given in [14] for V in
all possible cases.

Whether these oscillations are real or virtual, it will be determined by the masses of the
physically observed neutrinos νe, νμ, ντ .

i) If the masses of the νe, νμ, ντ neutrinos are equal, then the real oscillation of the
neutrinos will take place.

ii) If the masses of the νe, νμ, ντ are not equal, then the virtual oscillation of the neutrinos
will take place (the time of neutrino transitions will be deˇned by uncertainty relation). To
make these neutrinos real, these neutrinos must participate in the quasielastic interactions, in
order to undergo transition to the mass shell of the other appropriate neutrinos in analogy
with γ − ρ0 transition in the vector meson dominance model [18]. It is necessary to take
into account that in contrast to the strong interactions, the dependence on squared transferring
momentum in the weak interactions has a 	at form since W boson has a huge mass. It means
that at weak interactions of oscillating neutrinos in matter (detector) they transit on their mass
shell and there an additional dependence of squared transferring momentum does not appear.
In case ii) enhancement of neutrino oscillations will take place if the mixing angle is small at
neutrinos passing through a bulk of matter [15].

So, the neutrino mixings (oscillations) appear due to the fact that at neutrino creating the
eigenstates of the weak interactions the νe, νμ, ντ neutrino states are produced, but not the
eigenstates of the weak interaction violating lepton numbers (i.e., ν1, ν2, ν3 neutrino states).
And then, when neutrinos are passing through vacuum, they are converted into superpositions
of ν1, ν2, ν3 neutrinos and through these intermediate states they are converted from one
type into the other type. If ν1, ν2, ν3 neutrinos were originally produced, then the mixings
(oscillations) would not have taken place since in the weak interaction, where νe, νμ, ντ

neutrinos are produced, the lepton numbers are conserved.
In the case of three neutrino types the probability of νe → νe transitions has the following

form [14]:

P (νe → νe, t) = 1 − cos4(β) sin2(2θ) sin2(t(E1 − E2)/2)−
− cos2(θ) sin2(2β) sin2(t(E1 − E3)/2) − sin2(θ) sin2(2β) sin2(t(E2 − E3)/2), (22)

where E1, E2, E3 are energies of ν1, ν2, ν3 → x neutrinos and Ex =
√

p2 + m2
x.

Since lengths of neutrino oscillations

Li,j = 2π
p

| m2
i − m2

j | , i �= j = 1, 2, 3, (23)

are different, the expression of probability for neutrino oscillations at small distances has a
simpler form. For example, for νe → νe oscillations we have
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P (νe → νe) = 1 − sin2 2θ sin2((m2
2 − m2

1)/4p)t, (24)

where

sin2 θ = 1/2 −
(mνe − mνμ)

2
√

(mνe − mνμ)2 + (2mνeνμ)2
, (25)

and

sin2 2θ =
(2mνeνμ)2

(mνe − mνμ)2 + (2mνeνμ)2
. (26)

It is interesting to remark that expression (26) can be obtained from the BreitÄWigner
distribution [16]

P ∼ (Γ/2)2

(E − E0)2 + (Γ/2)2
(27)

by using the following substitutions:

E = mνe , E0 = mνμ , Γ/2 = 2mνe,νμ , (28)

where Γ/2 ≡ W (. . .) is a width of νe ↔ νμ transitions, i.e., virtual neutrino oscillations keep
in within the uncertainty relation. Then, we can interpret nondiagonal mass terms as widths
of neutrino transitions. In the general case, these widths can be computed by using a standard
method [12, 17].

If mνe,νμ differs from zero, then Eq. (26) gives a probability of νe ↔ νμ transitions and
then the probability of νe ↔ νμ transitions is deˇned by these neutrino masses and the width
(nondiagonal mass term) of their transitions. If mνe,νμ = 0, then the νe ↔ νμ transitions are
forbidden. So, this is a solution of the problem of the origin of the mixing angle in the theory
of vacuum oscillations in the scheme of mass mixings.

It is necessary to remark that in this corrected (alternative) scheme of neutrino oscillations,
in contrast to the standard theory, oscillations of neutrinos with equal masses are the real ones
and oscillations of neutrinos with different masses are the virtual ones and then the problem
of energy momentum conservation as well as the problem of neutrino disintegrations as wave
packets, are solved.

In the above-considered scheme of neutrino oscillations at neutrino oscillations their
masses change (for example, mνe → mνμ ). Theoretically, neutrino transitions without
changing of their masses are also possible [12, 17]. In this case, the mixing angles are
maximal (π/4). The author proposed another mechanism (model) of neutrino transitions,
which is generated by charge (couple constant) mixings, analogous to the model of vector
dominance, i.e., the model of γ → ρ0 transitions [18].

CONCLUSIONS

So, in the standard theory of neutrino oscillations the νe, νμ, ντ neutrinos are directly
produced as superpositions of the ν1, ν2, ν3 states (neutrinos). Since the νe, νμ, ντ neutrinos
are directly produced as superpositions of the ν1, ν2, ν3 neutrinos they cannot have deˇnite
masses. Then, the law of energy and momentum conservation cannot be fulˇlled and these
neutrinos cannot decay. Neutrino oscillations are real and since νe, νμ, ντ neutrinos are
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produced as wave packets they must decompose on components at deˇnite distances from the
point of their productions and then neutrino oscillations will be absent.

In the alternative scheme of neutrino oscillations constructed in the framework of par-
ticle physics the above-mentioned shortcomings are absent: the νe, νμ, ντ neutrino states are
produced as eigenstates of the standard weak interactions and they have deˇnite masses, then
the law of energy and momentum conservation is fulˇlled and they can decay. Then, for
presence of interaction, which violates lepton numbers, these neutrinos are transformed in
superpositions of their eigenstates (i.e., superpositions of ν1, ν2, ν3 neutrino states). Then,
oscillations of neutrinos with equal masses are the real ones, and the oscillations of neutrinos
with different masses are the virtual ones. Since oscillations of neutrinos with different masses
are virtual, then neutrinos as wave packets cannot decompose on components at a deˇnite
distance and the neutrino oscillations cannot disappear.

Expressions for probabilities of neutrino transitions (oscillations) in the alternative (cor-
rected) scheme have been given.
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