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AN ALGORITHMIC APPROACH TO SOLVING
POLYNOMIAL EQUATIONS ASSOCIATED

WITH QUANTUM CIRCUITS1

V. P. Gerdt,2 M.V. Zinin3

Joint Institute for Nuclear Research, Dubna

In this paper we present two algorithms for reducing systems of multivariate polynomial equations
over the ˇnite ˇeld F2 to the canonical triangular form called lexicographical Gréobner basis. This
triangular form is the most appropriate for ˇnding solutions of the system. On the other hand, the
system of polynomials over F2 whose variables also take values in F2 (Boolean polynomials) completely
describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be
computed by counting the number of solutions (roots) of the associated polynomial system. Thereby,
efˇcient construction of the lexicographical Gréobner bases over F2 associated with quantum circuits
gives a method for computing their circuit matrices that is alternative to the direct numerical method
based on linear algebra. We compare our implementation of both algorithms with some other software
packages available for computing Gréobner bases over F2.

‚ · ¡μÉ¥ ¶·¥¤¸É ¢²¥´Ò ¤¢   ²£μ·¨É³  ¶·¨¢¥¤¥´¨Ö ¶μ²¨´μ³¨ ²Ó´ÒÌ Ê· ¢´¥´¨° ¸μ ³´μ£¨³¨ ¶¥-
·¥³¥´´Ò³¨ ´ ¤ ±μ´¥Î´Ò³ ¶μ²¥³ F2 ± ± ´μ´¨Î¥¸±μ° É·¥Ê£μ²Ó´μ° Ëμ·³¥, ´ §Ò¢ ¥³μ° ²¥±¸¨±μ£· -
Ë¨Î¥¸±¨³ ¡ §¨¸μ³ ƒ·¥¡´¥· . „ ´´ Ö É·¥Ê£μ²Ó´ Ö Ëμ·³  ´ ¨¡μ²¥¥ Ê¤μ¡´  ¤²Ö ´ Ìμ¦¤¥´¨Ö ·¥Ï¥´¨°
¶μ²¨´μ³¨ ²Ó´ÒÌ Ê· ¢´¥´¨°. ‘ ¤·Ê£μ° ¸Éμ·μ´Ò, ¸¨¸É¥³Ò ³´μ£μÎ²¥´μ¢ ´ ¤ F2 ¸ ¶¥·¥³¥´´Ò³¨,
É ±¦¥ ¶·¨´¨³ ÕÐ¨³¨ §´ Î¥´¨¥ ¢ F2 (¡Ê²¥¢Ò ³´μ£μÎ²¥´Ò), ¤ ÕÉ ¶μ²´μ¥ μ¶¨¸ ´¨¥ Ê´¨É ·´μ° ³ -
É·¨ÍÒ, § ¤ ¢ ¥³μ° ±¢ ´Éμ¢μ° ¸Ì¥³μ°. ‚ Î ¸É´μ¸É¨, ¸ ³  ÔÉ  ³ É·¨Í  μ¶·¥¤¥²Ö¥É¸Ö Î¨¸²μ³ ·¥Ï¥´¨°
(Î¨¸²μ³ μ¡Ð¨Ì ±μ·´¥° ³´μ£μÎ²¥´μ¢) ¸¨¸É¥³Ò. ’¥³ ¸ ³Ò³ ÔËË¥±É¨¢´μ¥ ¶μ¸É·μ¥´¨¥ ²¥±¸¨±μ£· -
Ë¨Î¥¸±¨Ì ¡ §¨¸μ¢ ƒ·¥¡´¥·  ´ ¤ F2 ¤²Ö ¶μ²¨´μ³¨ ²Ó´μ° ¸¨¸É¥³Ò, μ¶¨¸Ò¢ ÕÐ¥° ±¢ ´Éμ¢ÊÕ ¸Ì¥³Ê,
¤ ¥É ³¥Éμ¤ ¢ÒÎ¨¸²¥´¨Ö Ê´¨É ·´μ° ³ É·¨ÍÒ ÔÉμ° ¸Ì¥³Ò,  ²ÓÉ¥·´ É¨¢´Ò° ¶·Ö³μ³Ê ¨¸¶μ²Ó§μ¢ ´¨Õ
³¥Éμ¤μ¢ ²¨´¥°´μ°  ²£¥¡·Ò. „ ´μ ¸· ¢´¥´¨¥ ÔËË¥±É¨¢´μ¸É¨ ¶·μ£· ³³´μ° ·¥ ²¨§ Í¨¨ μ¶¨¸ ´´ÒÌ
 ²£μ·¨É³μ¢ ¸ ·Ö¤μ³ ¤·Ê£¨Ì ¶·μ£· ³³ ¢ÒÎ¨¸²¥´¨Ö ¡ §¨¸μ¢ ƒ·¥¡´¥·  ´ ¤ F2.

PACS: 03.67.Ac, 01.30.Cc, 03.67.-a

1. INTRODUCTION

1.1. Motivation. Constructing unitary matrices from quantum circuit [1Ä3], built from
the Hadamard and Toffoli gates, is reduced to counting a number of solutions in F2 of
multivariate polynomial systems over F2, associated with the circuits. Since these gates form
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a universal gate basis [4], this construction may also be applied to circuits containing other
quantum gates [5] due to the famous SolovayÄKitaev algorithm [6, 7]. The last algorithm
is based on the SolovayÄKitaev theorem [8] which, when speciˇed to the Hadamard and
Toffoli gates, asserts that any circuit matrix can be approximated with arbitrary precision by
a sequence of these gates. Given a quantum circuit containing the Hadamard and Toffoli
gates only, construction of the multivariate polynomial system associated with the circuit is
an easy task from the algorithmic and computational point of view [2,3], which was observed
ˇrst in [9]. Much more difˇcult problem is to count the number of common roots in the
ground ˇeld for polynomials in the system. For this purpose we apply here the most universal
algorithmic tool of investigating and solving a multivariate polynomial system of equations Å
Gréobner bases [10, 11] and involutive bases [12] which are Gréobner bases of special form.
Both of these bases give the canonical form of the system which is uniquely deˇned by
the initial system and the monomial ordering which, to be algorithmically admissible, must
satisfy certain conditions [10]. The algorithms for constructing Gréobner bases designed in [10]
and involutive bases designed in [12,13] are called the Buchberger algorithm and Involutive
algorithm, respectively.

Actually, Involutive algorithm constructs not the reduced Gréobner basis, but the involutive
basis, which is usually redundant as a Gréobner basis and possesses some extra features.
However, to solve systems for quantum circuits Gréobner basis it sufˇces to use Involutive
algorithm just to output the corresponding reduced Gréobner basis which is a well-deˇned
subset of the involutive basis [13].

1.2. Basic Notations and Deˇnitions. Throughout the paper we use the following notations
and deˇnitions. X = {x1, . . . , xn} is the set of polynomial variables; R = K[X] is a
polynomial ring over ˇeld K of characteristic 0; R′ = F2[X] is a polynomial ring over
ˇeld F2; Id(F ) is the ideal generated by polynomial set F ; R̃ = F2[{x1, . . . , xn} ∈ F

n
2 ]

is a (Boolean) polynomial ring over ˇeld F2 whose variables take values in F2. Therefore,
multiplication of monomials in this ring reads

m1 · m2 = xi1
1 · · ·xin

n · xj1
1 · · ·xjn

n = x
max(i1,j1)
1 · · ·xmax(in,jn)

n .

As a monomial ordering we shall use the pure lexicographic ordering which is deˇned
as follows: m1 := xi1

1 · · ·xin
n � m2 := xi1

1 · · ·xin
n if i1 > j1 if and only if there exists

1 � k < n such that the ˇrst k − 1 exponents of m1 and m2 are equal but the kth exponent
of m1 is larger than the kth exponent of m2.

A monomial m will be called a quotient of monomials b and a in the ring R̃ if m · a = b
and deg(m) = min{deg(mi) | mi ⊗ a = b}. For a given ˇnite set of polynomials

P = {p1, . . . , pk} the set Id(P ) =
{

i=k∑
i=1

hipi | pi ∈ P, hi ∈ R(R′, R̃)
}

is an ideal generated

by set P .
Given an ideal I ⊂ R(R′, R̃) and an order �, a ˇnite subset G ⊂ R(R′, R̃) is a Gréobner

basis of I if (∀f ∈ I) (∃g ∈ G) [lm(g) | lm(f)], where u | v denotes divisibility of monomial
v by monomial u. For the further notations and deˇnitions we refer to [12,13].

The general strategy of the Gréobner (or involutive) bases approach is as follows. Given
a set F of polynomials that describes the problem F = {f1, f2, . . . , fm}, fi ∈ R(R′), we
transform F into the set G of polynomials which is a Gréobner or involutive basis and such
that Id(F ) = Id(G). Hence polynomial sets F and G are fully equivalent, and in particular
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they have the same common roots. However, due to some special properties of Gréobner (or
involutive) bases, many problems that are difˇcult for general F are ®easier¯ for G.

2. IMPLEMENTED ALGORITHMS

2.1. Buchberger's Algorithm. We implemented the following algorithm as a version of
Buchberger's algorithm [10] for the purpose of preliminary testing of data structures and
for experimental comparison with the Involutive algorithm [12, 13] whose version for R̃
is considered below. Unlike the latter, the former algorithm deals with all S-polynomials
(critical pairs). They are collected in set B at step 1.

Buchberger's Algorithm (F )

Input: F ∈ R(R′) \ {0} Å ˇnite set of polynomials
Output: G Å Gréobner bases of Id(F )

1: B := {[i, j] : 1 � i < j � length(G)}
2: while B �= ∅ do
3: [i, j] :=SelectPair(B, G)
4: B := B \ {[i, j]}
5: h :=NormalForm(Spoly(Gi, Gj), G)
6: if h �= 0 then
7: G := G ∪ {h};
8: B := B ∪ {[i, length(G)] : 1 � i < length(G)}
9: end if

10: end while
11: return G

Then the while-loop starts at step 2. Here a pair from the set B is selected at step 3
and the normal form [10] of the selected S-polynomial is computed (step 5). The non-
vanishing normal form is added to the basis at step 7 and set B is upgraded to include the
new S-polynomials (step 8). The loop is terminated [10,11] with a Gréobner basis G.

2.2. Involutive Algorithm. Involutive algorithm is based on partition of variables for
every polynomial into two sets, one of which contains multiplicative variables, and the other
contains non-multiplicative ones. This partition generates so-called involutive division of
monomials [12,13]. Accordingly, the product of a polynomial and its multiplicative variable
is called multiplicative prolongation of the polynomial whereas its multiplication by a non-
multiplicative variable is called non-multiplicative prolongation. We implemented Involutive
algorithm for the Janet division [12]. For this reason we call the algorithm Janet Division
Based Involutive Algorithm.

At the initial steps 1Ä3 of the algorithm a polynomial with the minimal leading monomial
is chosen. Then it is inserted into set G, whereas the remaining polynomials are inserted
into set Q. Then the while-loop starts. At step 5 a polynomial with the minimal leading
monomial is chosen from the set Q. Then this polynomial is Janet-reduced [12] modulo
set G. If its Janet normal form h is nonzero, then the corresponding polynomial is inserted
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into G at step 9. The insertion causes the augmentation of the set Q with non-multiplicative
prolongations of all its elements done at steps 10 and 11. The JanetNormalForm function
computes the Janet normal form [12,13] of the given polynomial modulo polynomials in G.

Janet Division Based Involutive Algorithm (F,�)

Input: F ⊂ R(R′) \ {0} Å ˇnite set of polynomials
Output: G Å Gréobner bases of Id(F )

1: choose f ∈ F such that lm(f) = min{lm(F )}
2: G := {f}
3: Q := F \ G
4: while Q �= ∅ do
5: choose p ∈ Q such that lm(p) = min≺{lm(Q)}
6: Q := Q \ {p}
7: h :=JanetNormalForm(p, G)
8: if h �= 0 then
9: G := G ∪ {h}

10: for all q ∈ G and x ∈ NMJ(q, G) do
11: Q := Q ∪ {q · x}
12: end for
13: end if
14: end while
15: return G

3. PECULIARITIES OF IMPLEMENTATION

3.1. Polynomials and Ideals in R̃ . The ring R̃ has some signiˇcant differences from rings
R and R′. For instance, any monomial order in the ring R̃ is not admissible in the usual
sense [10,11]. Moreover, a basis consisting of single polynomial may not be a Gréobner basis
at all [15] which is impossible in rings R and R′. For these reasons both Buchberger's and
Involutive algorithms cannot be directly applied to the ring R̃ (for more details see [15]).
Here we only note that in order to construct a Gréobner basis in ring R̃ , one should compute
a Gréobner basis in the ring R′ by adding binomials x2

i + xi to the polynomial set for every
monomial variable.

3.2. Vectorization. As far as all polynomials both in the initial basis and in the Gréobner
basis contain all variables in the degree either 0 or 1, it is rather convenient from the
computational point of view to use one-bit vectorization for the monomial inner data structures.
By the one-bit vectorization we mean an opportunity to store exponents of the monomial
variables by using for each variable one bit only. Here we use the bit arrays of lengths 32, 64
and so on depending on the number of variables under consideration: up to 32, up to 64, etc.
Thus, the corresponding variable has the degree one if and only if this variable occurs in the
monomial. From the programming point of view, exploitation of the maximal vectorization
is a useful property to speed up computation.

But as said in Subsec. 3.1, we can only use ring R′ and must add certain binomials. To
store these binomials, the one-bit vectorization is not enough, and one has to deal with the
two-bit vectorization.
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In our implementation of Buchberger's algorithm we managed to avoid the use of these
binomials and, thus, the one-bit vectorization is applied. But in Involutive algorithm the
added binomials, as well as their non-multiplicative prolongations, affect the partition of the
variables and cannot be omitted. For this reason, in our implementation of Invoutive algorithm
the two-bit vectorization is exploited.

4. COMPUTER EXPERIMENTS

We did an intensive comparison of the running time for our implementation of the algo-
rithms described above with some other computer algebra systems and packages implementing
computation of Gréobner bases over F2. Namely, we compared our timings with those for
CoCoA 4.6 [16], Singular 3.0.2 [17], and Mathematica 5.0 [18].

As benchmarks we took some of the serial examples in famous collections [19] that
are widely used for testing the Gréobner bases software. In doing so, those of the serial
benchmarks were used that do not contain variables with exponents 2 or higher. These serial
examples are cyclic, redcyclic, noon, and katsura. In addition to those serial benchmarks,
a new series was taken from paper [20]. We call the last series life since they are derived
in [20] from analysis of the famous Game of Life by J. Conway.

Some of the timings are depicted in Figs. 1Ä4. One can see that our implementation
reveals, on average, a better behavior. Especially this applies to Involutive algorithm.

Fig. 1. Timings for cyclic Fig. 2. Timings for katsura

5. FUTURE WORK

We are going to improve the above-presented version of Involutive algorithm as well as
of its implementation for constructing Gréobner bases in the ring R̃. In particular, we plan:

• Improvement of the inner data structures. In the present implementation we use bitsets
to store monomials and one-way lists for polynomials, although there may be more suitable
structures.

• Search for more appropriate strategies for selecting critical pairs to be processed in
Buchberger's algorithm and non-multiplicative prolongations in involutive algorithm.
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Fig. 3. Timings for life Fig. 4. Timings for noon

• Investigation of applicability to the ring R̃ of Involutive divisions different from the
Janet one (Pommaret division [12], etc.).

• Installation of our implementation for Involutive algorithm in the open source computer
algebra system GINV [21] as its module.

• Extension of the code to include counting of the number of solutions in F2.
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