
�¨¸Ó³ ¢ �—�Ÿ. 2009. ’. 6, º 7(156). ‘. 32Ä38

Š�Œ�œ�’…�	›… ’…•	�‹�ƒˆˆ ‚ ”ˆ‡ˆŠ…

A MATHEMATICA PROGRAM FOR CONSTRUCTING
QUANTUM CIRCUITS AND COMPUTING THEIR

UNITARY MATRICES1

V. P. Gerdt a, 2, R. Kragler b, 3, A. N. Prokopenya c, 4

a Joint Institute for Nuclear Research, Dubna
b University of Applied Sciences, Weingarten, Germany

c Brest State Technical University, Brest, Belarus

In this paper we brie
y describe a Mathematica program for simulation of quantum circuits and
illustrate some of its facilities by simple examples. Unlike other Mathematica-based quantum simulators,
our program provides a user-friendly graphical interface for generating quantum circuits and computing
the circuit unitary matrices. In addition to standard linear algebra-based tools, our program implements
special computer-algebra technique for constructing the multivariate polynomial system that, for a circuit
composed from the Toffoli and Hadamard gates, uniquely deˇnes the circuit matrix.

‚ ¸É ÉÓ¥ ¤ ¥É¸Ö ±· É±μ¥ μ¶¨¸ ´¨¥ ¶·μ£· ³³Ò ´ Ö§Ò±¥ ¸¨¸É¥³Ò Mathematica ¤²Ö ³μ¤¥²¨·μ-
¢ ´¨Ö ±¢ ´Éμ¢ÒÌ ¸Ì¥³. � ¡μÉ ¶·μ£· ³³Ò ¤¥³μ´¸É·¨·Ê¥É¸Ö ´ ¶·μ¸ÉÒÌ ¶·¨³¥· Ì. ‚ μÉ²¨Î¨¥ μÉ
¤·Ê£¨Ì ¶μ¤μ¡´ÒÌ ¶·μ£· ³³ ´ Ö§Ò±¥ ¸¨¸É¥³Ò Mathematica ¶·¥¤² £ ¥³ Ö ¶·μ£· ³³ ¨³¥¥É ¤·Ê¦¥-
¸É¢¥´´Ò° £· Ë¨Î¥¸±¨° ¶μ²Ó§μ¢ É¥²Ó¸±¨° ¨´É¥·Ë¥°¸ ¤²Ö ¶μ¸É·μ¥´¨Ö ±¢ ´Éμ¢ÒÌ ¸Ì¥³ ¨ ¢ÒÎ¨¸²¥´¨Ö
¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì ¨³ Ê´¨É ·´ÒÌ ³ É·¨Í. Š·μ³¥ Éμ£μ, ´ μ¸´μ¢¥ ³¥Éμ¤μ¢ ±μ³¶ÓÕÉ¥·´μ° ²£¥¡·Ò
¢ ¶·μ£· ³³¥ ·¥ ²¨§μ¢ ´ ¶·μÍ¥¤Ê· ¶μ¸É·μ¥´¨Ö ¶μ²¨´μ³¨ ²Ó´ÒÌ ¸¨¸É¥³ Ê· ¢´¥´¨° ¸μ ³´μ£¨³¨
´¥¨§¢¥¸É´Ò³¨, ±μÉμ· Ö ¶μ²´μ¸ÉÓÕ μ¶·¥¤¥²Ö¥É Ê´¨É ·´ÊÕ ³ É·¨ÍÊ ¤²Ö ¸Ì¥³, ¸μ¸É ¢²¥´´ÒÌ ¨§ ¢¥´-
É¨²¥° ’μËËμ²¨ ¨ �¤ ³ · .

PACS: 03.67.Ac, 01.30.Cc, 03.67.-a

INTRODUCTION

Of two models of quantum computation Å the quantum Turing machine and the circuit
model Å whose equivalence was rigorously shown in [1] for the QP problems, the latter
one turned out to be more useful for practical purposes such as the design and analysis of
quantum computers, quantum information processing and quantum algorithms [2].

A quantum circuit can be understood as a device consisting of logical quantum gates
that are arranged in the device according to steps in which the gates process qubits in time.

1The contribution of one of the authors (V. P. G.) was partially supported by grant 07-01-00660 from the Russian
Foundation for Basic Research and by grant 5362.2006.2 from the Ministry of Education and Science of the Russian
Federation.

2E-mail: gerdt@jinr.ru
3E-mail: kragler@hs-weingarten.de
4E-mail: prokopenya@brest.by

A Mathematica Program for Constructing Quantum Circuits 33

It is usually assumed that the time runs from the left to right-hand side of the diagram
depicting the quantum circuit. The number of gates in a circuit characterizes its size as well
as computational complexity of the quantum computational process that is implemented in
the circuit.

Since, in spite of some exciting rumors that are spread by the Canadian company D-Wave
(see the Web page http://www.dwavesys.com/), realistic quantum computers have not yet
been built, it is worthwhile to simulate quantum computation on a classical computer, and
there is quite a number of such simulators (see, for example, [3, 4]).

We developed the ˇrst version of a Mathematica program [5] that provides, unlike other
Mathematica-based simulators, such as [4], a user-friendly interface for assembling quantum
circuits and for computing their unitary matrices. In doing so, our program, in addition to the
straightforward computation of the circuit matrix by means of the Mathematica built-in linear
algebra facilities, provides users with the special routine to generate a system of multivariate
polynomials for a circuit constructed from the Toffoli and Hadamard gates. This system,
whose coefˇcients are elements in the ˇnite ˇeld F2 (i.e., with values 0 or 1 only), is such
that its number of common roots in F2 deˇnes the matrix elements of circuit matrix [6].

Since similar multivariate polynomial systems over F2 that are of interest in cryptoanaly-
sis [7] were recently effectively solved in [8] by means of Gréobner bases [9] for the case
of 80 variables, it gives a real hope that this computer algebra method may be competitive
with or even superior to the direct linear algebra methods. They always suffer from the ex-
ponential blow-up in size of the matrices required to simulate quantum circuits. In paper [10]
some related algorithmic and implementation aspects of constructing Gréobner bases for the
polynomial systems over F2 are suggested.

Below we describe brie
y our Mathematica program and illustrate its facilities by an
example from [5] with some elucidation of the method used in the program for generation of
the circuit polynomial equations.

1. INPUT OF A CIRCUIT AND ITS GRAPHICAL OUTPUT

A circuit may contain any ˇxed number of qubits. Our program draws them as a col-
umn of states in the form |aj〉 (j = 1, 2, . . .), and the output states of qubits in the form
|bj〉 (j = 1, 2, . . .). It contains the built-in data base of gates which includes the following
gates [2]:

• one-qubit gates: Hadamard, Pauli X, Pauli Y and Pauli Z, Phase S and the π/8 or T ;
• two-qubit gates: Controlled-X (CNOT), Controlled-Z, Controlled-S, Controlled-T and

Swap gate;
• three-qubit gates: Toffoli (CCNOT).
This set of basis gates can be easily extended by the user. The set of six one-qubit gates

indicated above, together with the CNOT-gate, forms a universal set of gates [2]. Another
universal set is formed by the Hadamard and Toffoli gates [11]. It means that any quantum
computation can be decomposed in terms of the gates which are contained in any of the two
universal sets.

A quantum circuit is represented in our program as a rectangular table whose rows
correspond to qubits, whereas columns contain gates, and, thus, the number of columns
depends on the number of quantum gates and their arrangement. In drawing the circuit, we

34 Gerdt V. P., Kragler R., Prokopenya A. N.

Fig. 1. Cell produced for matrix 3 × 6 Fig. 2. Speciˇcation of entries in the circuit ma-

trix of Fig. 1

Fig. 3. The circuit generated

follow the rule: each column in the table can contain either one multi-qubit gate or only
one-qubit gates and there are not any neighboring columns containing only one-qubit gates
acting on different qubits.

In this section we consider an example of a three-qubit circuit that contains ˇve Hadamard
and three Toffoli gates. To input it into the program, one uses the command matrixGenera-
ting which opens an interactive window and asks the user to enter the number of rows (qubits)
and the number of columns for the circuit. When these numbers are 3 and 6, respectively, the
program outputs the skeleton table shown in Fig. 1. The unit entries of the skeleton matrix
can now be interactively upgraded to specify the circuit. In the speciˇcation shown in Fig. 2
symbols C and X set the control and target qubits, respectively, for the Toffoli gate, whereas
symbol H sets the Hadamard gate. Then command circuit[mat] of Fig. 2 outputs the
circuit with ˇve Hadamard gates and three Toffoli gates as shown in Fig. 3.

2. COMPUTATION OF THE CIRCUIT MATRIX

The unitary 8 × 8 matrix (circuit matrix) determined by the circuit of Fig. 3 is computed
by calling function matrixU[mat] with the same argument as used in Figs. 1 and 2. The
output of function matrixU[mat] is shown in Fig. 4.

In the given case the matrix is computed by means of the linear algebra routines built
in Mathematica. Because of exponential size 2n × 2n of the matrix for n input qubits, this
straightforward linear algebra method cannot be directly applied on a typical modern computer
to circuits whose number of qubits exceeds 15. For this reason we have written the special
command polynomials for generating a system of multivariate (Boolean) polynomials over
F2 associated with the circuit and such that their number of common roots in F2 uniquely
deˇnes the elements of circuit matrix. This association of polynomials with the quantum
circuits built from the Hadamard and Toffoli gates was established in paper [6] by means
of the quantum mechanical Feynman's sum-over-paths method speciˇed to quantum circuits.
For all that, polynomial Boolean variables in the system are path variables which are in
one-to-one correspondence with the Hadamard gates entering in the circuit. The coefˇcients
in polynomials are Boolean polynomials themselves in the parameters ai, bi (i = 1, 2, . . . , n)
deˇning (classical) states of the input and output qubits.

A Mathematica Program for Constructing Quantum Circuits 35

Fig. 4. The unitary matrix for circuit of Fig. 3

More preciously, the classical gate for the quantum Hadamard gate outputs the path
variable x ∈ F2 [6] irrespective of the input. Its value determines one of the two possible
paths of computation. Thereby, the classical Hadamard gate acts at qubit a as

a �→ x, a, x ∈ F2.

Classically, the Toffoli gate acts on the triple of qubits with control qubits a1, a2 and target
qubit a3 in the following way:

(a1, a2, a3) �→ (a1, a2, a3 ⊕ a1a2) ,

where ⊕ denotes (Boolean) addition modulo 2.
In Feynman's sum-over-paths approach, action of a quantum circuit is given as a sum

over all possible classical paths. A classical path is deˇned by a sequence of classical bit
strings of the form a = s1, s2, . . . , sm = b obtained from action of the classical gates. Each
set of values of the path variables xi gives a sequence of classical bit strings which form an
admissible classical path.

For the circuit of Fig. 3 the path variables and, thus, all admissible classical paths can be
explicitly shown by invoking the function circuitPol. As shown in Fig. 5, this function
depicts the circuit together with the path variables and the related classical bit strings.

The sequence of classical bit strings for this circuit is given by a = {a1, a2, a3} = s1,
s2 = {a1, a2 ⊕ a1a3, a3}, s3 = {x1, x2, a3}, s4 = {x1 ⊕ x2a3, x2, a3}, s5 = {x3, x2, x4},
s6 = {x3, x2, x4 ⊕ x2x3}, s7 = {x3, x5, x4 ⊕ x2x3} = b.

Each admissible classical path has a phase factor. The phase is determined in terms of the
Hadamard gates applied [6] and is changed only if both input and output of the Hadamard
gate are equal to 1. It yields the formula

ϕ(x) =
∑

Hadamard gates

input • output, (1)

where summation is done in F2. For all that Toffoli gates do not affect the phase.

Fig. 5. Path variables for circuit of Fig. 3

36 Gerdt V. P., Kragler R., Prokopenya A. N.

In the example of Fig. 3 the phase of the path x is given by the expression (cf. Fig. 6)

ϕ(x) = a1x1 ⊕ a2x2 ⊕ a1a3x2 ⊕ x1x3 ⊕ a3x2x3 ⊕ a3x4 ⊕ x2x5.

Feynman's sum-over-paths method derives the following representation for matrix ele-
ments of a circuit matrix U as sums over all allowed paths from the initial classical state a
to the ˇnal classical state b [6]:

〈b|U |a〉 =
1√
2h

∑
x:b(x)=b

(−1)ϕ(x).

The sum is evaluated over h Hadamard gates which are contained in the circuit.
Let N0 be the number of positive terms in the sum and N1 the number of negative terms:

N0 = | {x | b(x) = b ∧ ϕ(x) = 0} |, (2)

N1 = | {x | b(x) = b ∧ ϕ(x) = 1} | . (3)

Thus, N0 and N1 count, respectively, the number of solutions in F
h
2 for systems (2) and (3)

of n+1 polynomials in h variables over F2. Thereby the matrix element of the circuit unitary
matrix U may be written as the difference:

〈b|U |a〉 =
1√
2h

(N0 − N1) . (4)

Our Mathematica package contains the function polynomials which constructs the set
of polynomials over F2. This set follows from the bit string of the form b(x) = b that
relates the output classical qubit states b with the path variables. Here b(x) denotes the last
bit string sm in the admissible path set which depends polynomially on the path variables
x = {x1, . . . , xh}. The circuit unitary matrix is determined by the number of solutions for
polynomial systems (2) and (3) in F

h
2 with the input and output bit variables ai, bi taking

values in F2. For this purpose the function polynomials of our Mathematica program
provides output of polynomials in the form b(x)⊕ b = 0 and adds the phase polynomial (1)
to the system.

For the circuit of Fig. 3 the command polynomials[mat] outputs the system shown
in Fig. 6. The ˇrst three polynomials in Fig. 6 are those generated by the output bit string
relating the input and output qubit values for admissible paths (see Fig. 5) coded in terms of
the variables {x1, x2, x3, x4, x5}. The last polynomial is the phase polynomial deˇned by
formula (1).

To count the total number of solutions for the polynomial systems as given in (2) and (3),
when the variables take their values in F2 one can use the method of Gréobner or involutive

Fig. 6. Polynomial system for the circuit of Fig. 3

A Mathematica Program for Constructing Quantum Circuits 37

bases (see [10]). For the system of polynomials shown in Fig. 6, the lexicographical Gréobner
basis for the ordering on the variables x5
 x4
 x3
 x2
 x1 is given by

G :

⎧⎪⎪⎨
⎪⎪⎩

g1 = a1x1 ⊕ b1x1 ⊕ a2x2 ⊕ a1a3x2 ⊕ b2x2 ⊕ a3b3,
g2 = x3 ⊕ b1,
g3 = b1x2 ⊕ x4 ⊕ b3,
g3 = x5 ⊕ b2.

(5)

In this case the Gréobner basis (5) can easily be computed with Mathematica [5]. Having the
lexicographical Gréobner basis (5) computed, it is easy [5] to construct the 8 × 8 matrix for
the circuit of Fig. 3 by formula (4). As a result, the matrix in Fig. 4 is obtained.

Generally, for an n-qubit circuit with h Hadamard gates (the number of Toffoli gates
is not of importance here) the polynomial system associated with the circuit contains n + 1
polynomials in h variables x = {x1, x2, . . . , xh} and 2n parameters a = {a1, a2, . . . , an},
b = {b1, b2, . . . , bn}. These parameters determine the values of the input and output qubits,
respectively. To apply formula (4) for computing the circuit matrix by the Gréobner bases
method, one needs to take into account that both variables and parameters are elements in the
ˇnite ˇeld F2. For this reason, to convert the polynomial system into the Gréobner basis form
using the Mathematica function GroebnerBasis, one should add to the polynomial systems
binomials of the form x2

i + x1 (i = 1, . . . , h). These extra polynomials may substantially
increase the volume of computation needed for construction of Gréobner bases since one has
to process a large number of S-polynomials [9].

In contrast, the algorithms and software described in [10] are oriented to compute the
required Gréobner basis without explicit use of the binomials indicated. This is one of the
reasons of higher computational efˇciency of this software in comparison with Mathematica
(see benchmarking in [10]).

REFERENCES

1. Yao A. Quantum Circuit Complexity // Proc. of the 34th IEEE Symp. on Foundations of Computer
Science. Los Alamitos, CA, 1993. P. 352Ä360.

2. Nielsen M., Chuang I. Quantum Computation and Quantum Information. Cambridge Univ. Press,
2000.

3. De Raedt H., Michielsen K. Computational Methods for Simulating Quantum Computers. Handbook
of Theor. and Comp. Nanotechnology / Eds.: M. Rieth and W. Schommers. Forschungszentrum
Karlsruhe, 2006. V. 3; quant-ph/0406210.

4. Julia-Diaz B., Burdis J.M., Tabakin F. QDENSITY Å A Mathematica Quantum Computer Simu-
lation. Elsevier Sci., 2005; http://www.pitt.edu/∼tabakin/QDENSITY

5. Gerdt V. P., Kragler R., Prokopenya A. N. A Mathematica Package for Construction of Circuit Ma-
trices in Quantum Computation // Comp. Algebra and Differential Equations. Acta Acad. Aboensis
B. 2007. V. 67, No. 2. P. 28Ä38.

6. Dawson C. M. et al. Quantum Computing and Polynomial Equations over the Finite Field Z2.
quant-ph/0408129.

38 Gerdt V. P., Kragler R., Prokopenya A. N.

7. Patarin J. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New
Families of Asymmetric Algorithms // EUROCRYPT'96. V. 1070 of LNCS 1070. Springer-Verlag,
1996. P. 33Ä48.

8. Faug�ere J. C., Joux A. Algebraic Cryptanalysis of Hidden Field Equations (HFE) Using Gréobner
Bases. LNCS 2729. Springer-Verlag, 2003. P. 44Ä60.

9. Gréobner Bases and Applications / Eds. Buchberger B. and Winkler F. Cambridge Univ. Press,
1998.

10. Gerdt V. P., Zinin M. V. An Algorithmic Approach to Solving Polynomial Equations Associated
with Quantum Circuits // This volume.

11. Aharonov D. A Simple Proof that Toffoli and Hadamard Gates Are Quantum Universal. quant-
ph/0301040.

