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The de
ection of V -level atomic beam in two-mode quantized cavity ˇeld in a twin-photon state is
investigated. Depending on the atomÄlight interaction scheme, two-dimensional position patterns in a
subwavelength range, as well as the effects of spatial entanglement, are reported.
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INTRODUCTION

One of the basic processes of atomic optics is the de
ection of atomic beams when
interacting with a standing light wave inside an optical cavity. The de
ection pattern of
atoms from a single mode of a quantized cavity ˇeld has been investigated in detail. In
particular, it has been shown that de
ection of atomic beams by a one-mode cavity ˇeld is a
sensitive function of the photon statistics (see, for example, [1, 2]).

In the present paper, novel effects resulting from de
ection of a V -level atomic beam in
a two-mode quantized cavity ˇeld are considered. The two-mode ˇeld is supposed in a twin-
photon state or photon-number correlated state (PNCS) which can be generated by parametric
down-conversion processes. The role of photon-number correlations is important in the
proposed scheme. Indeed, it was found that the atomic de
ection patterns, in the transverse
plane to the direction of the center of atomic mass motion, are essentially different for the
cases of independent or correlated modes, respectively. In particular, an atomic de
ection
pattern for the case of twin photons displays spatial correlations between atomic position
variables in the transverse directions, which are understood as the spatial entanglement in the
de
ected pattern.

It is well known that the measurement of the state of a standing wave may lead to the
localization of the position of the de
ected atom [1Ä3]. As will be shown here, for narrow
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initial position distributions of atoms, the localization procedure for this scheme leads to
producing controllable pattern structures with feature spacing smaller than a wavelength of
the light in the cavity. We illustrate these effects, considering various regimes of interactions
of a V -type three-level atomic beam with two crossed standing electromagnetic waves in
PNCS.

1. SUBWAVELENGTH STRUCTURES
IN THE ATOMIC DEFLECTIONS

Let us consider the quantum dynamics of a three-level atom with a V -type conˇguration
of energy levels moving along the z direction and passing through a cavity electromagnetic
ˇeld (see Fig.1). Our aim here is to investigate the position patterns of de
ected atoms in the
x − y plane. We concentrate on the interaction of a three-level atom, initially prepared in a
ground atomic state |1〉, with two quantized cavity modes at equal frequencies and opposite
circular polarizations.

We investigate the transverse atomic motion in the x − y plane, assuming that the initial
transverse distribution of atoms is Gaussian in the form

P (x, y) = P (x)P (y) =
1

2πΔxΔy
exp

[
− (x − 〈x〉)2

2(Δx)2

]
exp

[
− (y − 〈y〉)2

2(Δy)2

]
, (1)

with widths Δz =
√
〈(z − 〈z〉)2〉 centered at the nodes of both waves (z = x, y).

Two standing quantized modes are chosen in a photon-number correlated state,

|field〉 =
∑
n

An |n〉2|n〉3, (2)

where |n〉2, |n〉3 are the photon states corresponding to the transitions |1〉 → |2〉 and |1〉 → |3〉,
respectively, and An is the probability amplitude of twin photons, i.e., the amplitude of ˇnding
n-photon pairs.

Fig. 1. Schematic diagrams showing the investigated model. a) The atomic 
ux crossing the interaction
region. b) Energetic levels of a V -type atom interacting with two cavity modes with coupling constant

g2 and g3
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It is also assumed that the interaction time between the atom and the cavity ˇelds is short
compared to the cavity lifetime and the inverse decay rates of the excited |2〉 and |3〉 atomic
states, respectively. The Hamiltonian describing such a system reads as follows:

H =
P 2

z

2m
+ �

∑
i∈{2,3}

Δi|i〉〈i| + � Ω2 a†
2 σ12 + � Ω3 a†

3 σ13 + h.c., (3)

where P 2
z denotes the center-of-mass motion momentum operator of the atom with mass m,

while Δi = ωi1 − ω (i = 2, 3) are the corresponding detunings of the excited atomic level
frequencies {ω31, ω21} from the cavity one ω; ai and a†

i are the annihilation and creation
operators of the ith mode, while σ12 = |1〉〈2| and σ13 = |1〉〈3| are the corresponding
transition operators of a three-level atom. The couplings of the atom to the two modes are
determined by the spatial mode functions Ω3 ≡ g3 sin (k3x) and Ω2 ≡ g2 sin (k2y), where
{k3 = kx, k2 = ky} with kx = ky = ω/c, while g2 = E0e+〈1|d|2〉, and g3 = E0e−〈1|d|3〉.
E0 =

√
ω/2v is the so-called electric ˇeld per photon; e+ and e− are the polarization vectors,

while 〈1|d|2〉 and 〈1|d|3〉 are the dipole moments of the corresponding atomic transitions. The
foregoing article is based on the RamanÄNath approximation; i.e., we neglect the transverse
kinetic energy in comparison with the atomÄˇeld interaction energy.

In what follows, the conditional probability distribution function W (x, y, ϕ) in de
ection
of V -type atoms when they pass through the interaction region will be analyzed, if cavity
modes are in given phase states for each of the modes:

|ϕ〉 = |ϕ2〉|ϕ3〉 =
1
2π

∑
ni

∑
nj

ei(niϕ2+njϕ3) |ni〉2|nj〉3. (4)

For the case of statistically independent modes the probability amplitude of having two-
photons factorizes, such that the position distribution is also factorized W (x, y) = W (x)W (y);
i.e., it is represented as a product of two independent probability distributions for x and y,
respectively. For the case of a PNCS of two modes, i.e., Eq. (2), the conditional probability
distribution reads as

W (x, y, ϕ) =
P (x)P (y)

(2π)2

∣∣∣∣∣
∑

n

Anein
(

F (x,y)−ϕ
)∣∣∣∣∣

2

, (5)

where ϕ = ϕ2 + ϕ3, while An is the probability amplitude of ˇnding n correlated photon
pairs in the modes, and

F (x, y) = χ2 sin2 (k2y) + χ3 sin2 (k3x), (6)

where χ2 = g2
2t/Δ2 and χ3 = g2

3t/Δ3. Thus, the probability distribution (5) is not fac-
torizable function, i.e., W (x, y) �= W (x)W (y), and this could be understood as spatial
entanglement of the de
ected particles.

The photon-pair distribution Pn = |An|2 has been theoretically and experimentally in-
vestigated mainly for different regimes of parametric down-conversion processes. Here we
use a quasi-phenomenological approach to describe these states relying on both theoretical
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and experimental considerations; that is, for concrete calculations we use the PNCS with a
Poissonian distribution [4Ä6]

An = e−N/2 αn

√
n!

and hence Pn =
Nn e−N

n!
, (7)

where α =
√

Neiθ, N = |α|2 is the averaged value of the total number of photon pairs
generated by a single pump pulse. We note that an average of 0.9 photon pairs per pulse was
experimentally obtained in a periodically poled lithium niobate waveguide [7].

The typical results for the atomic position patterns due to interaction of atomic beam
with twin-photon number modes are shown in Fig. 2 for the cases of narrow initial position
distribution of atoms, when the width of the distribution (1) is smaller than the wavelength
of the cavity modes, and for ϕ = θ which gives the best localization. Below we give an
interpretation of these results. If we take the width of the atomic wave packet to be much
smaller than the atomic transition wavelength and redirect it at a node of the ˇeld, we can
then replace the sinusoidal potentials in Eq. (5) with its linear expansion, i.e., sin (kiz) ≈ kiz.
Then, according to formulae (5), (6), the maximal interference is realized for

|χ2|(k2y)2 ± |χ3|(k3x)2 = 2πm, (8)

with k2y 	 1, k3x 	 1 and m = 0, 1, 2, . . . The upper sign stands for identical detunings,
that is, (Δ2, Δ3) > 0 or (Δ2, Δ3) < 0, while the lower one for opposite detunings, i.e.,
Δ2 > 0, Δ3 < 0 or vice versa. It is not difˇcult to realize that the maxima of the de
ection
pattern, which is characterized by W (x, y), adopt the form of a sequence of circles in the x−y
plane for the same detunings and of crossed lines for opposite detunings. Figure 2 depicts the
corresponding probability distributions W (x, y) for initially Gaussian atomic wave packets.
In particular, Fig. 2, a shows the corresponding de
ection pattern with correlated beams that
are identically detuned from the resonance, while Fig. 2, b describes the respective case with
opposite detunings. One can observe here that the sections parallel to the plane x − y in
Fig. 2 are qualitatively described by Eq. (8). We see that the position distribution W (x, y)
focused on the case ϕ = θ is indeed peaked at the nodes of the two modes. By increasing

Fig. 2. The position distribution atomic pattern W (x, y) (in units of 2π/λ2) as a function of
{k3x/π, k2y/π} for correlated modes with ϕ = θ. Here N = 1, |χ2| = |χ3| = 10, and

Δx = Δy = 0.1λ: a) {χ2, χ3} > 0; b) {χ2 > 0, χ3 < 0}
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Fig. 3. The momentum distributions W (p2, p3) (in units of λ2) as a function of {p2/k2, p3/k3} for the

case of off-resonance interaction. Here χ2 = χ3 = 10, Δx = Δy = 0.1λ: a) the case of independent
modes in coherent states with the mean photon number equal to one and with ϕ = 0; b) the case of

correlated modes in PNCS with the mean twin-photon number N = 1

the interaction parameter χ for both modes, one can obtain smaller structures. Thus, this
scheme provides the mechanism for two-dimensional localization of atoms in the presence of
the photon correlation. Depending on the detuning's sign we demonstrate the formation of
two types of subwavelength two-dimensional atomic structures via off-resonant interaction of
atoms with light beams in PNCS.

2. LOCALIZATION IN THE MOMENTUM SPACE

In this section the localization mechanism for the case of PNCS is shortly discussed in the
momentum space. For this goal the distribution W (p2, p3), in terms of the transverse atomic
momenta p2 = py and p3 = px, in the de
ection patterns is calculated. The results are shown
in Fig. 3 for narrow initial atomic wave packets and hence, as we see, wider distributions in
the momentum space are realized. Calculations show that the momentum pattern for the case
of independent modes contains a set of maxima spread around the position p2 = p3 = 0 in
concordance with the respective spatial distribution of the atoms. The momentum distribution
for PNCS and for narrow initial Gaussian atomic wave packet centered at the position of the
best localization shows the localization of the components of the momenta around the position
p2 = p3 = 0 as shown in Fig. 3.

In conclusion, I believe that this approach could be of some practical interest, particularly,
for problems of controllable formation of atomic nanostructures and quantum lithography.
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