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The quantum optical gate CCNOT based on ˇve-level atomic scheme is discussed. The qubits are
encoded in polarization properties of three optical beams. The nonlinear cross Kerr effect is used for
getting nonlinear phase shifts in these beams. A way of CNOT implementation using coupled double
quantum wells is suggested. The device is described in the framework of the model based on the
operator extensions theory.

�¡¸Ê¦¤ ¥É¸Ö ·¥ ²¨§ Í¨Ö ±¢ ´Éμ¢μ£μ ¢¥´É¨²Ö CCNOT ´   Éμ³´μ° ¶ÖÉ¨Ê·μ¢´¥¢μ° ¸Ì¥³¥. ŠÊ¡¨ÉÒ
±μ¤¨·ÊÕÉ¸Ö ¢¥±Éμ· ³¨ ¶μ²Ö·¨§ Í¨¨ É·¥Ì ¶ÊÎ±μ¢. 	¥²¨´¥°´Ò° ÔËË¥±É Š¥··  ¨¸¶μ²Ó§Ê¥É¸Ö ¤²Ö
¶μ²ÊÎ¥´¨Ö ´¥²¨´¥°´μ£μ Ë §μ¢μ£μ ¸¤¢¨£ . �·¥¤²μ¦¥´ ¸¶μ¸μ¡ ·¥ ²¨§ Í¨¨ ¢¥´É¨²Ö CNOT ¸ ¶μ³μÐÓÕ
¸¢Ö§ ´´ÒÌ ¤¢μ°´ÒÌ ±¢ ´Éμ¢ÒÌ Ö³. � ¡μÉ  Ê¸É·μ°¸É¢  μ¶¨¸ ´  ¢ · ³± Ì ³μ¤¥²¨, μ¸´μ¢ ´´μ° ´ 
É¥μ·¨¨ · ¸Ï¨·¥´¨° μ¶¥· Éμ·μ¢.

PACS: 03.67.Lx, 01.30.Cc, 03.67.-a

INTRODUCTION

The work of past several years has greatly clariˇed both the theoretical potential and the
experimental challenges of quantum computations. The ˇrst aim of our paper is to suggest a
version for CCNOT gate implementation. We chose photon as carrier of information. This
way has both advantages and disadvantages: decoherentization of photon state is very weak
but it is very difˇcult to ensure the interaction between different photons. There exist works,
in which information is encoded by photonic phase (see, e.g., [2]) or squeezed light in the
ˇeld quadrature. Two different ways have been proposed to circumvent the problem of the
absence of signiˇcant photonÄphoton interactions, namely, linear optics quantum computation
and nonlinear optical processes that involve few photons. While one is a probabilistic scheme
implicitly based on the nonlinearity hidden in single-photon detectors, the other one is based
on the enhancement of photonÄphoton interaction achieved either in cavity QED conˇgurations
or in dense atomic media exhibiting electromagnetically induced transparency (EIT).
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The second part of the paper deals with another implementation of qubit based on using
of quantum dots and wires (see, e.g., [3]). It is preferable due to well-developed experimental
methods of fabrication and investigation of such a system and also due to the fact that this
system can be easily used as parts of some conventional nano- and microelectronic structures
(e.g., in classical computer).

1. CCNOT GATE

The ˇrst aim of our paper is to suggest a version for CCNOT gate implementation. We
chose photon as carrier of information. This way has both advantages and disadvantages:
decoherentization of photon state is very weak but it is very difˇcult to ensure the interaction
between different photons.

An idea of CNOT gate implementation using so-called M scheme was suggested in [1].
Namely, they rely on the polarization degree of freedom of two travelling single-photon wave
packets and exploit the giant Kerr nonlinearities that can be observed in dense atomic media
under EIT. In more detail, one has medium in strong magnetic ˇeld caused splitting of Rb
electrons levels forming particularly M scheme. Note that different transitions in the scheme
correspond to different circular polarization of photon. Two weak and well-stabilized probe
and trigger beams pass through the medium (initially one has electrons at the ground state of
the M scheme only). If the frequency and the polarization of the photon correspond to the
transition parameters it causes the increase of higher levels populations. It is the background
for nonlinear interaction between these two beams. It allows them to realize CNOT gate. We
suggest using M scheme of levels for implementation of CCNOT gate. In this case three
weak and well-stabilized beams pass through the cell with rubidium gas. Two of them are
probe and the third one is trigger. When the frequency and the polarizations of photons
correspond to transmission parameters it changes the conditions of transmitting of the trigger
beam. We use this phenomenon to ensure nonlinear interaction between these three beams.
Information is encoded by the John's vectors of polarization of the corresponding photon (we
mark by ®plus¯ the counter clockwise polarization, and by ®minus¯ the clockwise one):

|Ψj〉 =

(
a+

j eiα+
j

a−
j eiα−

j

)
, j = {p, c, t},

where the notations are explained as follows: p corresponds to the ˇrst (probe) beam, c Å
to the second (controlling) and t Å to the third (trigger) beam. The initial (®IN¯) three-qubit
state is tensor product of three one-qubit states (i.e., it is nonentangled state). The three-qubit
gate based on M scheme can be implemented in magnetically conˇned sample of 87Rb.
Three weak and well-stabilized light beams exhibit a strong cross Kerr effect in the ˇve-level
structure described in Fig. 1. Two of that beams are probe and another one is trigger. A
σ+ polarized probe couples the excited state |2〉 to the ground |1〉 where all the atomic
population is initially trapped. The second polarized beam couples the excited state |2〉 with
other Zeeman split ground state |3〉 . State |3〉 is coupled to level |4〉 by a σ− polarized
trigger beam. A fourth σ− polarized tuner beam couples level |4〉 and a third ground-state sub-
level |5〉 . Owing to the tuner, the trigger group velocity can be signiˇcantly slowed down
similarly to what happens to the probe ones. We anticipate that in the present M scheme the
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Fig. 1. M scheme

group velocity mismatch can instead be reduced to zero and the cross Kerr nonlinearity made
large enough to yield cross-phase shift values of the order of π.

Phase gating is realized when only one of the eight possible probes and trigger polarization
conˇgurations exhibits a strong nonlinear cross-phase shift. When all beams are σ− polarized,
it can be seen, in fact, that for not too large detuning there is no sufˇciently close excited
state to which level |1〉 couples and no population in |2〉 and |3〉 to drive the relevant trigger
transition. All beams only acquire the trivial vacuum phase shift. Likewise for other cases
when ˇrst probe beam is σ− polarized. In other cases, when the ˇrst probe is σ+ polarized,
the electrons from ground state |1〉 are driven to second level and population there begins
to increase. But if the second probe beam is σ+ polarized there is no population in |3〉
for trigger transmission. The ˇrst probe acquires the nontrivial phase shift, but for other
beams we have the previous result. If both of two probe beams have proper polarizations
the nonlinear phase shift between them takes place, in other words, there is an addition to
trivial phase shift. When the trigger beam is σ+ polarized the ground state |3〉 is populated
but there is no relevant trigger transmission. At last, the case when the trigger beam is σ−

polarized is more interesting for us because there is nonlinear phase shift between three of
input beams. This is the strongest phase shift. Our next target is to ˇnd the parameters which
ensure the greatest differences between the phase shifts. The Table contains summary phase
shifts (ϕp + ϕc + ϕt) for different initial qubit states and indication of performing of the
corresponding transition (®yes¯/®no¯).

3-qubit 1 → 2 2 → 3 3 → 4 Summary phase
000 n n n 0
001 n n n 0
010 n n n 0
011 n n n 0
100 y n n 0
101 y n n 0
110 y y n 0
111 y y y π
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In other words, the M scheme action may be described as an operator of the following
transformation:
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The matrix in left hand is a tensor product of three one-qubit states and the matrix in right
hand is the result of M transformation which couldn't be represented as a direct product. It
allows us to write the M operator in an explicit form:

�

M = diag {1 − 2δi,8}8
i=1.

To get the matrix of CCNOT operation one should do the following transformations:

Q0 = (I ⊗ I ⊗ H) ·
�

M · (I ⊗ I ⊗ H),

where Q0 is CCNOT operator; H Å the one-qubit Hadamard operator, and I Å the identity
operator.

Figure 2 shows the results of calculations of the phase shift of different 3-qubit states for
the following values of parameters: Δ2 = Δ3 = −0.5, Δ4 = 0.3, Δ5 = 0, Ω12 = 0.54,
Ω23 = 1.5, Ω34 = 0.33, Ω45 = 0.36. Here 108c−1 is the unit of frequency. One can see that
there exist values for which |111〉-state (governed by the Rabi frequency) differs signiˇcantly
from the others.

Fig. 2. a) Phase shift via detuning Δ1: 1 Å for |100〉-state; 2 Å for |110〉-state; 3 Å for |111〉-state.
b) Phase shift for |111〉-state via Rabi frequency Ω23
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2. CNOT GATE

In this part of the paper we suggest a way of implementation of an important quantum
two-qubit gate CNOT (XOR). It is based on using of two coupled double quantum dots
(quantum wells). We deal with nonsymmetric double well. The parabolic approximation
is used for the parts of the double wells. It is not essential, but it allows us to simplify
calculations. Consider two-dimensional nonsymmetric quantum well formed by two parabolic
potentials

V1,2 = 2−1ω2
1,2((x − x1,2)2 + (y − y1,2)2)

with different parameters ω2
1,2. Here (x, y) are the Cartesian coordinates on the plane. More

precisely, we have the parabolic potential curves outside some neighbourhood of the parabola's
intersection and some smoothing in this neighbourhood. In this article we use simple solvable
model of the double well which allows us to take into account tunnelling between the parts
of the double well. It is sufˇcient for the purposes of the present paper. More detailed (but
essentially more complicated) description based on other methods mentioned above gives us
some corrections but does not change the main result Å a possibility to construct CNOT gate
using this system. That is why here we prefer to use more simple (but mathematically correct)
solvable model. The model is based on the theory of self-adjoint extensions of symmetric
operators [4,5]. The structure of the model is as follows. The starting point is the orthogonal
sum of the Hamiltonians of two independent parabolic quantum wells: H0 = H1 + H2 in

L2(R2) ⊕ L2(R2), H1,2 = − �

2m
Δ + V1,2. Let us restrict H0 on the set of smooth functions

vanishing at (x1, y1), (x2, y2). The closure of this operator is a symmetric one with the
deˇciency indices (2, 2). It has self-adjoint extension which gives us the model in question.
The family of the extensions is parameterized by Hermitian matrices of the second order. Of
course, there is the operator H0 among other extensions, but we are interested in those model
operators that correspond to some interaction between the wells. One can describe electron
tunnelling by choosing appropriate values on the model parameters which play the roles of
coupling constants. The Green function G1,2(r, r′, z) for the Hamiltonian with parabolic
potential is well known. It allows us to get the result for the model operator in an explicit
form. Particularly, the resolvent R(z) (R(z) = (H − z)−1) is obtained using the Krein
formula and has the following form:
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Here CE is the Euler constant; Γ is the Euler Γ function; α, μ are the model parameters.
The positive parameter α is related to the tunnelling probability pt between the wells, pt = 0
(pt = 1) corresponds to zero (inˇnite) value of the parameter α. Parameter μ is related to the
height of the barrier between two parts of double well.

If the system is in homogeneous electric ˇeld F , then energy levels in independent
parabolic wells shift by

ΔE =
F√

(2mω2
1,2)

. (2)

Relation (1) shows that the corresponding level shift is approximately the same for small
value of the parameters α, μ−1, i.e., for ˇrst levels (near the bottom of the wells). Note that
the shift ΔE depends on the well parameter ω1,2 (2). It allows us to change the relative
positions of the levels corresponding to different parts of the double well. There are not
more than two electrons at each level. In the case of odd number of electrons the localization
of the last non-paired electron in the ˇrst or the second part of the double well depends on
the relative position of the levels which varies if the electric ˇeld exists. For some level
shifts the position of non-paired electron changes (Fig. 3), and one can use this effect for
quantum computation. The double well can be considered as a qubit. Namely, let the state
|1〉 correspond to the localization of the non-paired electron in the left part of the double well
and the state |0〉 Å in the right part. Hence, the switching on of the electric ˇeld leads to
the change of the qubit state, i.e., we do the operation NOT. Figure 3, b, c shows the electron
transitions corresponding to the change of the qubit state.

Let us consider the analogous second qubit which is situated near the ˇrst one and is
oriented in such a way that the part of the double well that is chosen as the state |1〉, is close
to the ˇrst qubit (see Fig. 3, a). The second qubit will be the control qubit and the ˇrst one
will be the target qubit. If the second qubit is in the state |1〉 then the corresponding electron

Fig. 3. a) Geometrical conˇguration of the system of two double quantum dots. Indices 0, 1 show the

place of non-paired electron localization in the corresponding state. In the picture the upper qubit is

the target one and the lower qubit is the control one. b) The scheme of electron transition during the
transformation of the target qubit from the state |0〉 to the state |1〉. c) The scheme of electron transition

during the transformation of the target qubit from the state |1〉 to the state |0〉
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is situated near the ˇrst qubit, hence it creates in the ˇrst double well an electric ˇeld which
causes the shift of the levels in the ˇrst (target) qubit and the change of the state of this
qubit. If the control qubit is in the state |0〉 then the corresponding electron is far from the
ˇrst double well and its electric ˇeld is very weak and for the corresponding values of the
wells parameters is nonsufˇcient for the proper levels shifts causing change of the state of
the target qubit. Hence, we do the operation CNOT.

For calculations we use some approximation. Tunnelling between parts of the double
well is described in the framework of the solvable model based on the operator extension
theory. It is appropriate for the levels far from the top of the barrier between the parts of the
well. We consider one-particle Schrödinger equation and mean ˇeld approximation for the
interaction between the particles. More detailed investigation gives us corrections but does
not change the effect. To ensure the coherence it is necessary to keep the system under low
temperature Å kT should be less than the energy of the level excitations (i.e., approximately
1 mK). The decoherence can be caused by inclusions, i.e., the sample should have high purity.
Note that in quantum dot implementations of qubits suggested earlier the qubit control was
related to the time during which the external ˇeld exists. It is very difˇcult to determine this
time precisely, and the variation of this parameter leads to error. In our case this source of
errors is absent. Due to another implementation of qubit (the position of non-paired electron)
this parameter does not play any role (we need only that this time be sufˇcient to ensure
electron transitions). It is an essential advantage of our way.
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