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CORRELATIONS OF POLARIZATIONS
AND ENTANGLED STATES

IN THE TWO-PHOTON SYSTEM
V. L. Lyuboshitz, V. V. Lyuboshitz 1

Joint Institute for Nuclear Research, Dubna

The correlations of the linear and circular polarizations in the system of two photons have been
theoretically investigated. The polarization of a two-photon state is described by the one-photon Stokes
parameters and by the components of the correlation ®tensor¯ in the Stokes space. It is shown that
in the case of two-photon decays π0 → 2γ, η → 2γ, K0

L → 2γ, K0
S → 2γ and the cascade process

|0〉 → |1〉+γ → |0〉+2γ (|0〉 and |1〉 are states with the spin 0 and 1, respectively) the ˇnal two-photon
state represents a characteristic example of the entangled (nonfactorizable) state, and the correlations
between the Stokes parameters in all these decays have the purely quantum character: the incoherence
inequalities of the Bell type for the components of the correlation ®tensor¯, established previously for
the case of classical ®mixtures¯, are violated. The general analysis of the registration procedure for two
correlated photons by two one-photon detectors is performed.
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PACS: 03.67.Bg, 01.30.Cc, 03.67.-a

INTRODUCTION

Previously, in the works [1Ä5] the spin correlations of two free particles with
spin 1/2 [1Ä4], as well as the angular correlations between the �ight directions of decay
products of two particles or resonances [5], re�ecting the spin correlations in the system of
two unstable particles with arbitrary spin, have been analyzed in detail. In doing so, the spin
states of each of the particles were set in the respective rest frames, which is possible only at
nonzero masses of both particles.
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In the present work we study the correlation properties of the system of two photons. Since
the photon mass is equal to zero, the introduction of spin as the internal angular momentum
in the rest frame is inapplicable in this case, and thus for describing the photon polarization
the special consideration is required.

1. NONFACTORIZABLE TWO-PARTICLE STATES

We will discuss the nonfactorizable (entangled) states of two photons.
The nonfactorizable (entangled) states of two particles cannot be reduced to the simple

direct product of two one-particle states, and they represent coherent superpositions of pairs
of one-particle states:

|Φ〉(1,2) =
∑

i

∑
k

cik|i〉(1)|k〉(2), (1)

where cik are constants,
∑
i

∑
k

|cik|2 = 1.

Generally, correlations at the registration of nonfactorizable two-particle states by one-
particle detectors should be considered as the manifestation of the quantum-mechanical effect
predicted, at ˇrst, by Einstein, Podolsky and Rosen [6]. The essence of this effect is as
follows. If a two-particle state is not factorizable, the character of measurements performed
for the ˇrst particle determines the readings of the detector that analyzes the state of the
second particle, although the particles may prove to be at a large distance from each other
after their creation. In this case the amplitude of the registration of a two-particle state (1) by
two one-particle detectors, selecting the states |L〉(1) and |M〉(2), is a result of the interference
of pairs of one-particle states:

ALM =
∑

i

∑
k

cik〈L|i〉(1)〈M |k〉(2). (2)

With this, due to the correlations, the selection of different states |L〉(1) and |M〉(1) only for
the ˇrst particle leads to the different states of the second particle:

|Ψ〉(2)L =
∑

i

∑
k

cik〈L|i〉|k〉(2), |Ψ〉(2)M =
∑

i

∑
k

cik〈M |i〉|k〉(2). (3)

Let us note that the states |Ψ〉(2)L and |Ψ〉(2)M can be the eigenfunctions of noncommuting
operators. As a result, due to the correlations, in the case of a pure entangled two-particle
state the corresponding one-particle states for the ˇrst and second particles are ®mixed¯: they
should be described by the one-particle density matrices but not by the vectors of state (wave
functions). We deal with the ®management¯ by the state of one of two particles without the
direct force action on it. A. Einstein considered this situation as a paradox testifying to the
incompleteness of the quantum-mechanical description [6].

If a two-particle system itself is a part of a more complicated system, which is described
by the two-particle density matrix, the nonfactorizability means that this density matrix cannot
be represented as a sum of direct products of one-particle density matrices with non-negative
coefˇcients. In this case we have a ®mixed¯ entangled two-particle state [2, 4].
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2. DENSITY MATRIX OF THE TWO-PHOTON SYSTEM

Let us consider the system of two photons with the momenta k1 and k2. We introduce
two systems of coordinate axes: (x, y, z) with the axis z parallel to the momentum k1 of the
ˇrst photon, and (x̃, ỹ, z̃) with the axis z̃ parallel to the momentum k2 of the second photon.
Let us choose the axes x and x̃ so that they were parallel to each other and perpendicular to
the plane passing through the momenta k1 and k2. Analogously to the spin density matrix of
two particles with spin 1/2 (see, for example, [4]), we can represent the polarization density
matrix of two photons in the form:

ρ̂(1,2) =
1
4

[
Î(1) ⊗ Î(2) +

3∑
i=1

ε
(1)
i σ̂

(1)
i ⊗ Î(2) +

3∑
k=1

ε
(2)
k Î(1) ⊗ σ̂

(2)
k +

3∑
i=1

3∑
k=1

Tikσ̂
(1)
i ⊗ σ̂

(2)
k

]
.

(4)

Here σ̂
(1)
i , σ̂

(2)
k are the Pauli matrices; ε

(1)
i denotes the Stokes parameters of the ˇrst

photon [6Ä8], deˇned in the system of axes (x, y, z), ε
(2)
k denotes the Stokes parameters of

the second photon, deˇned in the system of axes (x̃, ỹ, z̃), Tik is the correlation ®tensor¯ in
the Stokes space, describing the correlation of polarizations of the ˇrst and second photons.

For independent photons we have Tik = ε
(1)
i ε

(2)
k . In the general case such an equality does

not hold.
Let |3, +〉 and |3,−〉 be the one-photon states with the full linear polarization along the

axes x and y, respectively; let |2, +〉 and |2,−〉 be the one-photon states with the right (helicity
+1) and left (helicity −1) circular polarization, respectively, and let |1, +〉 and |1,−〉 be the
one-photon states with the full linear polarization along the axis directed at the angles π/4
and 3π/4, respectively, with respect to the axis x. Then, by deˇnition, the one-photon Stokes

parameters are as follows: εi = W
(+)
i − W

(−)
i , where W

(+)
i and W

(−)
i are the probabilities

of registering the photon in the states |i, +〉 and |i,−〉, respectively (W (+)
i + W

(−)
i = 1). In

doing so, r =
√

ε21 + ε23 is the degree of linear polarization and ε2 is the degree of circular
polarization, which are invariant with respect to rotations in the plane (x, y).

Components of the ®tensor¯ Tik can be determined by using the following probabilistic
formula (compare with [4]):

Tik = W
(+,+)
i,k − W

(−,+)
i,k − W

(+,−)
i,k + W

(−,−)
i,k . (5)

Here i = 1, 2, 3, k = 1, 2, 3; W
(+,+)
i,k is the probability of registering the ˇrst photon in

the state |i, +〉 and the second photon Å in the state |k, +〉; W
(−,+)
i,k is the probability of

registering the ˇrst photon in the state |i,−〉 and the second photon Å in the state |k, +〉;
W

(+,−)
i,k is the probability of registering the ˇrst photon in the state |i, +〉 and the second

photon Å in the state |k,−〉; W
(−,−)
i,k is the probability of registering the ˇrst photon in the

state |i,−〉 and the second photon Å in the state |k,−〉. In accordance with the normalization

condition, W
(+,+)
i,k + W

(−,+)
i,k + W

(+,−)
i,k + W

(−,−)
i,k = 1.

In the case of the entirely unpolarized photons we have: ε
(1)
i = ε

(2)
i = 0, Tik = 0 (all the

Stokes parameters and all components of the correlation tensor equal zero).
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3. CORRELATIONS BETWEEN THE STOKES PARAMETERS OF TWO PHOTONS

When deˇning the two-photon density matrix, we have chosen the pair of transverse unit
vectors of polarization of the ˇrst and second photons (let us denote them as χ1 and χ̃1) in
the same direction [k1k2], which is perpendicular to the plane passing through the momenta
of two photons k1 and k2 (χ1 = χ̃1). Two other unit vectors of polarization of the ˇrst and
second photons χ2 and χ̃2 satisfy the equalities: χ2χ1 = χ2k1 = 0, χ̃2χ̃1 = χ̃2k2 = 0,
χ̃2χ2 = cos β, where β is the angle between the momenta k1 and k2.

We will consider the transverse unit vectors as spatial parts of the unit 4-vectors χ1 and
χ2, χ̃1 and χ̃2; let us introduce further the gradient transformations at the transition to the
frame moving with the 4-velocity u [7]:

χ′
1 = χ1 − k1

χ1u

k1u
, χ′

2 = χ2 − k1
χ2u

k1u
; χ̃′

1 = χ̃1 − k2
χ̃1u

k2u
, χ̃′

2 = χ̃2 − k2
χ̃2u

k2u
, (6)

where k1 and k2 are 4-momenta of the ˇrst and second photons.
In the basis of the 4-vectors (6) the polarization density matrix of two photons (4) is

invariant with respect to the Lorentz transformations. In accordance with this, the Stokes

parameters of the ˇrst and second photons ε
(1)
i , ε

(2)
k [7Ä9] and all the components of the

correlation tensor Tik (i, k = 1, 2, 3) are Lorentz-invariant.
Due to the transversality of polarization unit vectors in any frame, at the transition from

the initial frame 1 to the frame 2, moving with the velocity v with respect to the frame 1,
their spatial orientation changes: the unit vectors of polarization of the ˇrst photon χ1

and χ2 and those for the second photon χ̃1 and χ̃2 turn around the vectors [v k1] and
[vk2], respectively, by the positive aberration angles θ1 = arcsin (| [k1k′

1] |/(|k1| |k′
1|)) and

θ2 = arcsin (| [k2k′
2] |/(|k2| |k′

2|)), where k′
1 and k′

2 are the momenta of the ˇrst and second
photons in the frame 2.

Let us introduce now the frame of the center-of-inertia of two photons. This frame
always exists, if the momenta of two photons are not parallel to each other. The velocity
of the center-of-inertia frame with respect to the given frame is determined by the formula
v = (k1 +k2)/(|k1|+ |k2|). It is clear that at the transition to the c.i. frame the unit vectors
of polarization of the ˇrst and second photons turn in opposite directions around the axis
being parallel to the vector [k1 k2]. In doing so, in the c.i. frame k1 = −k2, χ′

1 = χ̃′
1,

χ′
2 = −χ̃′

2.
Let us consider, as an example, the decay π0 → 2γ. In the π0-meson rest frame

(coinciding with the c.i. frame of two γ quanta) the decay amplitude has the struc-
ture: Aγγ ∼ ([ e (1)∗ e (2)∗ ]n), where n is the unit vector directed along the momen-
tum of one of the photons, e(1) and e(2) are complex unit vectors of polarization of the
ˇrst and second photons, respectively, being perpendicular to the vector n. So, we ˇnd
that in this case all the Stokes parameters of the ˇrst and second photons are equal to

zero (thus, the single-photon states are unpolarized: ε
(1)
i = ε

(2)
k = 0, i, k = 1, 2, 3).

Meantime, according to (5), the two-photon system is correlated: T11 = +1, T22 = +1,
T33 = −1, all the nondiagonal components of the correlation tensor Tik equaling zero. Let us
remark that the equality T22 = +1, according to which the helicities of two photons
at the decay π0 → 2γ coincide, follows from the fact that the π0 meson has zero spin.
Meantime, the equality T33 = −1, according to which the linear polarizations of two
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γ quanta are mutually perpendicular, is the consequence of the negative internal parity of
the π0 meson.

Taking into account the above-considered changes of spatial orientation of polarization
unit vectors, the values of polarization parameters of two γ quanta at the decay π0 → 2γ,
indicated above, remain valid in any frame (in particular, in the laboratory frame, where the
decaying π0 meson is moving). It is clear that the same holds also for the decays η → 2γ,
K0

L → 2γ1, as well as for the para-positronium decay into two γ quanta.

4. REGISTRATION OF THE SYSTEM OF TWO CORRELATED PHOTONS

The probability of registration of a system of two photons with two one-photon detectors,

selecting the state of the ˇrst photon with the Stokes parameters ξ
(1)
1 , ξ

(1)
2 , ξ

(1)
3 , being speciˇed

in the representation of the above-indicated unit vectors χ1 and χ2 and the state of the second

photon with the Stokes parameters ξ
(2)
1 , ξ

(2)
2 , ξ

(2)
3 , being speciˇed in the representation of the

unit vectors χ̃1 and χ̃2, is described, according to the density matrix (4), by the following
correlation formula:

W ∼ 1 +
3∑

i=1

ε
(1)
i ξ

(1)
i +

3∑
k=1

ε
(2)
k ξ

(2)
k +

3∑
i=1

3∑
k=1

Tik ξ
(1)
i ξ

(2)
k . (7)

The ®ˇnal¯ Stokes parameters have the meaning of analyzing powers. In particular, the
Compton scattering on an unpolarized electron, selecting the states with the polarization
vector being perpendicular to the scattering plane and the states with the polarization vector
lying in the scattering plane, is a characteristic analyzer of the photon linear polarization.
In the representation of these states the analyzing power is determined by one parameter,
namely, by the coefˇcient of leftÄright azimuthal asymmetry at the Compton scattering of a
linearly polarized photon:

r(ω, θsc) =
sin2 θsc

(ωf/ω) + (ω/ωf) − sin2 θsc

, (8)

where θsc is the angle of the photon scattering in the laboratory frame; ω and ωf are the
photon energies before and after the Compton scattering, respectively. In the representation
of the polarization unit vectors χ1, χ2 and χ̃1, χ̃2, which have been introduced earlier for
describing the polarization properties of the system of two γ quanta, the analyzing powers are

related to the ®vectors¯ in the Stokes space ξ(1) = (ξ(1)
1 , 0, ξ

(1)
3 ) and ξ(2) = (ξ(2)

1 , 0, ξ
(2)
3 ),

where (j = 1, 2):

ξ
(j)
1 = r(ωj , θ

(j)
sc ) sin 2ψ(j)

sc , ξ
(j)
3 = r(ωj , θ

(j)
sc ) cos 2ψ(j)

sc . (9)

1Neglecting the effects of CP -invariance violation, the CP -parity of the long-lived neutral kaon K0
L is negative.

Meantime, the amplitude of the two-photon decay of the short-lived neutral kaon K0
S with the positive CP -parity

has the structure: AK0
S
→2γ ∼ (e (1)∗ e (2)∗). In this case the linear polarizations of the ˇrst and second photons,

as well as their helicities, are mutually equal: T11 = −1, T22 = +1, T33 = +1.
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Here ψ
(1)
sc (ψ(2)

sc ) is the angle between the plane of Compton scattering of the ˇrst (second)
photon and the plane (k1,k2), passing through the momenta of two photons. Taking into
account the values of components of the correlation tensor (see above), it follows from the
relations (7) and (9) that the correlation of the planes of Compton scattering of two γ quanta,
produced in the decay π0 → 2γ, will have the form:

d2W =
dψ

(1)
sc dψ

(2)
sc

4π2

[
1 − r(ω1, θ

(1)
sc ) r(ω2, θ

(2)
sc ) cos 2(ψ(1)

sc + ψ(2)
sc )

]
. (10)

In the c.i. frame of two photons (k1 = −k2) the angle ψ = ψ
(1)
sc + ψ

(2)
sc is equal to the angle

between the planes of Compton scattering of two photons, and we have

dW =
1
2π

[
1 − r(ω1, θ

(1)
sc ) r(ω2, θ

(2)
sc ) cos 2ψ

]
dψ. (11)

5. QUANTUM CHARACTER OF THE TWO-PHOTON CORRELATIONS

According to the results of the works [2, 4], in the case of incoherent (®classical¯) mixtures
of factorizable states of two spin-1/2 particles the modulus of the sum of any two diagonal
components of the correlation tensor cannot exceed unity. The same incoherence inequalities
for diagonal components of the correlation ®tensor¯ in the Stokes space should hold for
incoherent mixtures of factorizable two-photon states.

However, for nonfactorizable two-photon states the incoherence inequalities can be essen-
tially violated. Indeed, in the case of the above-considered decays π0 → 2γ, η → 2γ and
K0

L → 2γ the ˇnal two-photon system is produced in the following entangled state (in the
representation of polarization unit vectors):

Φ(1,2) =
1√
2
(|χ1〉⊗|χ̃2〉+|χ2〉⊗|χ̃1〉), and we see that one of the incoherence inequalities

is violated: in the c.i. frame of two γ quanta we have: T11 + T22 = 2 > 1.
In the decay K0

S → 2γ the ˇnal two-photon system is generated in the entangled state of
other structure:

Φ ′ (1,2) =
1√
2
(|χ1〉 ⊗ |χ̃1〉 − |χ2〉 ⊗ |χ̃2〉), and here we have: T22 + T33 = 2 > 1, i.e.,

again one of the incoherence inequalities is violated.
Thus, the correlations of polarizations of two photons in all these decays have the strongly

pronounced quantum character.
It is interesting to consider also, from this viewpoint, the cascade decay |0〉 → |1〉 + γ;

|1〉 → |0〉+ γ with the emission of two photons (the spins of the initial and ˇnal states equal
zero, and the spin of the intermediate state equals 1). Let us denote by Bm the complex
vector, normalized to unity, corresponding to the intermediate state with the spin projection
m onto the quantization axis. The amplitude of cascade transition has the structure:

Aγγ ∼
∑

m=0,±1

(e(1)∗B∗
m)(Bme(2)∗) ∼ (e(1)∗e(2)∗),

where e(1) and e(2) are the vectors of polarization of two cascade photons, respectively.
Within the same representation of polarization unit vectors as before, the Stokes parameters
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and the components of the correlation ®tensor¯ (5) have the values:

ε
(1)
1 = ε

(1)
2 = ε

(1)
3 = 0; ε

(2)
1 = ε

(2)
2 = ε

(2)
3 = 0;

T12 = T21 = T13 = T31 = T23 = T32 = 0; (12)

T11 =
2 cos θ

1 + cos2 θ
, T22 = − 2 cos θ

1 + cos2 θ
, T33 = 1,

where θ is the angle between the momenta of two photons, as before.
At θ = 0, when the photon momenta are parallel, we have: T22 = −1 (the photon

helicities are mutually opposite, which follows directly from the fact of conservation of the
projection of angular momentum onto the coordinate axis in the cascade decay). At θ = π,
when the photon momenta are antiparallel, T22 = +1 (the photon helicities are the same).

According to (12), within the interval of angles π/2 > θ > 0 T33 + T11 > 1, and within
the interval of angles π > θ > π/2 T33 + T22 > 1. So, in this case one of the incoherence
inequalities is also violated.

REFERENCES

1. Lyuboshitz V. L., Podgoretsky M. I. // Yad. Fiz. 1997. V. 60. P. 45; Phys. At. Nucl. 1997. V. 60.
P. 39.

2. Lyuboshitz V. L. // Proc. of XXXIV Winter School of Petersburg Nucl. Phys. Inst. ®Physics of
Atomic Nucleus and Elementary Particles¯, Saint-Petersburg, 2000. P. 402.

3. Lyuboshitz V. V., Lyuboshitz V. L. // Yad. Fiz. 2000. V. 63. P. 837; Phys. At. Nucl. 2000. V. 63.
P. 767.

4. Lednicky R., Lyuboshitz V. L. // Phys. Lett. B. 2001. V. 508. P. 146.

5. Lednicky R., Lyuboshitz V. V., Lyuboshitz V. L. // Yad. Fiz. 2003. V. 66. P. 1007; Phys. At. Nucl.
2003. V. 66. P. 975.

6. Einstein A., Podolsky B., Rosen N. // Phys. Rev. 1935. V. 47. P. 477.

7. Lyuboshitz V. L., Smorodinsky Ya. A. // ZhETF. 1962. V. 42. P. 846; Sov. Phys. JETP. 1962. V. 15.
P. 589.

8. Berestetsky V. B., Lifshitz E.M., Pitayevsky L. P. Quantum Electrodynamics. M.: Nauka, 1989.
§§ 8, 87.

9. Landau L.D., Lifshitz E. M. Field Theory. M.: Nauka, 1988. § 50.


