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QUANTUM ENTANGLEMENT IN SECOND QUANTIZED
FERMION SYSTEMS

O.D. Timofeevskaya1

Faculty of Physics, Moscow State University, Moscow

In this communication we consider the zero-temperature properties of entanglement in free and
interacting fermion systems following Bogoliubov's excitation approach. We investigate spin biparticle
entanglement in BCS superconductor ground state of electron gas and in EPS state of 3He atoms. The
relation between pair-distribution functions and biparticle quantum entanglement is discussed.

‚ · ¡μÉ¥ · ¸¸³ É·¨¢ ÕÉ¸Ö ¸¢μ°¸É¢  ±¢ ´Éμ¢μ£μ ¶¥·¥¶ÊÉÒ¢ ´¨Ö ¢ ¸¨¸É¥³ Ì ³´μ£¨Ì Ë¥·³¨μ´μ¢
¶·¨ ´Ê²¥¢μ° É¥³¶¥· ÉÊ·¥ ¸ ¶μ³μÐÓÕ ³¥Éμ¤  ±¢ §¨Î ¸É¨Í 
μ£μ²Õ¡μ¢ . ˆ¸¸²¥¤Ê¥É¸Ö ¤¢ÊÌÎ ¸É¨Î´μ¥
¸¶¨´μ¢μ¥ ¶¥·¥¶ÊÉÒ¢ ´¨¥ ¢ μ¸´μ¢´μ³ ¸μ¸ÉμÖ´¨¨ ¸¢¥·Ì¶·μ¢μ¤ÖÐ¥£μ Ô²¥±É·μ´´μ£μ £ §  ¨ ¢ ¸¢¥·ÌÉ¥-
±ÊÎ¥³ ¸μ¸ÉμÖ´¨¨  Éμ³μ¢ £¥²¨Ö-3. �¡¸Ê¦¤ ¥É¸Ö ¸¢Ö§Ó ³¥¦¤Ê ±¢ ´Éμ¢Ò³ ¶¥·¥¶ÊÉÒ¢ ´¨¥³ ¨ ¤¢ÊÌÎ -
¸É¨Î´Ò³¨ ±μ··¥²ÖÍ¨μ´´Ò³¨ ËÊ´±Í¨Ö³¨.

PACS: 03.65.Ud, 01.30.Cc, 03.67.-a

INTRODUCTION

Quantum entanglement is viewed as a precious resource in quantum information process-
ing [1]. It is believed to be the main ingredient of the quantum speed-up in quantum
computation and communication. A quantum computer is a many-body system where the
Hamiltonian can be manipulated. And experience built up over the years in condensed matter
is helping in ˇnding new protocols for quantum computation and communication. At the same
time, the study of the ground state of many-body systems with methods developed in quantum
information may unveil new properties. Recently, considerable interest has been devoted to
entanglement of two subsystems of a many-body system [2]: quantum spin systems [3, 4],
spins of noninteracting electron gas [5, 6], entanglement in many-body systems [7,8].

In realistic systems containing a large number of particles the concept of a particle actually
fades away and is replaced by a notion of excitation modes. Individual particles really
become indistinguishable. In addition to that, the concept of fermion (versus boson) particle
statistics then also becomes directly relevant and it is important to understand its relation to
entanglement.

In many-body systems the correlation functions play a fundamental role in describing
their physical phenomena. Thus, it is natural to explore the relation between entanglement
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and correlation functions. In this paper we ˇnd the two-spin state of a fermion system with
pairing and discuss the relation between entanglement measure and pair distribution functions.

We consider many fermion systems. Let Ψ̂ be the ˇeld operator and obey the usual
fermion anticommutation relations

{Ψ̂+
σ′(r′), Ψ̂σ(r)} = δσ′σδ(r′ − r), {Ψ̂σ′(r′), Ψ̂σ(r)} = 0,

where r is the position vector and σ = +1/2, −1/2 is the spin of the fermion.
The creation â+(f) and annihilation â(f) fermion operators with momentum �f satisfy

the relations
{â(f), â+(f ′)} = δf ,f ′ ,

{â(f), â(f ′)} = 0, f ≡ (f , σ).

The Bogoliubov transformation from particle fermion operators â+(f), â(f) to quasiparticle
fermion operators α̂+

ξ , α̂ξ has the form

â(f) = ufξα̂ξ + v∗fξα̂
+
ξ ,

â+(f) = u∗
fξα̂

+
ξ + vfξα̂ξ.

The functions ufξ, vfξ satisfy orthonormal and completeness conditions. Anticommutation
relations for quasiparticle operators are

{α̂ξ, α̂
+
ξ′} = δξ,ξ′ , {α̂ξ, α̂ξ′} = 0.

The new ®vacuum¯ |c〉 is a ground state of the system. It is deˇned by condition

α̂ξ|c〉 = 0, ∀ξ, 〈c|c〉 = 1.

1. IDEAL FERMI GAS

We start with noninteracting nonrelativistic Fermi gas. The energy spectrum of particles is

E(f) =
f2

�
2

2m
− μ,

where μ is the chemical potential for particle, and it is assumed that μ > 0. There is a
Fermi surface, which bounds the volume in momentum space where the energy is negative,
E(f) < 0, and where the particle states are all occupied at T = 0. For an isotropic system
the Fermi surface is a sphere of radius fF =

√
2mεF /�, εF = μ. Thus,

â(f , σ) = α̂+(f , σ) (vf = 1, uf = 0), if f < fF ,

â(f , σ) = α̂(f , σ) (vf = 0, uf = 1), if f > fF .

The density of number of fermions for each spin projection is

nσ = 〈c|Ψ̂+
σ (r)Ψ̂σ(r)|c〉 =

1
(2π)3

∫
df |vf |2. (1)

For free fermions nσ =
1

6π2
f3

F .
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Correlation functions are deˇned by relation

K(r, σ, σ′) = 〈c|Ψ̂+
σ (r1)Ψ̂+

σ′(r2)Ψ̂σ′(r2)Ψ̂σ(r1)|c〉,

where r = r1 − r2. For two free fermions with parallel spins we get

K(r, σ, σ) = n2
σ(1 − φ2(r)),

where

φ(r) =
1

nσ(2π)3

∫
df eifr |v(f , σ)|2. (2)

For free fermions the function φ(r) = 3(sin (fF r)− cos (fF r)fF r)/(fF r)3 satisˇes relations
0 � φ2(r) � 1, φ2(0) = 1, φ2(∞) = 0.

Therefore, fermions with parallel spin are negative correlated. The correlation radius is
deˇned by radius fF of Fermi sphere r− ∼ rF ≡ 1/fF .

For σ = ±1/2 we get
K(r, σ,−σ) = n2

σ.

Free fermions with opposite spins are independently distributed.
For vacuum state |c〉 two-spin reduced density matrix of two fermions at r1 and r2

positions equals

ρ̂(r) =
1
γ

R̂(r), γ = Tr R̂(r),

where
R(σ1, σ2; σ′

1, σ
′
2, r) = 〈c|Ψ̂+

σ1
(r1)Ψ̂+

σ2
(r2)Ψ̂σ′

2
(r2)Ψ̂σ′

1
(r1)|c〉

and r is a distance between fermions.
It is easy to calculate that

R(σ,−σ; σ,−σ; r) = −n2
σφ2(r).

Thus,

ρ̂(r) =
1
γ′

⎛
⎜⎜⎜⎜⎜⎝

1 − φ2(r) 0 0 0

0 1 −φ2(r) 0

0 −φ2(r) 1 0

0 0 0 1 − φ2(r)

⎞
⎟⎟⎟⎟⎟⎠

,

where
γ′ = 2(2 − φ2(r)).

According to PeresÄHorodeski criterion [9] a condition of entanglement is a matrix ρ̃, obtained
by partial transposition of ρ, i.e., ρ̃μν;μ′ν′ = ρμν′;μ′ν , has only non-negative eigenvalues. It
gives φ2(r) > 1/2. This result for noninteracting electron gases was got in [5] in Green's
functions approach.

This means that two free fermions are entangled if the relative distance between them is
smaller than 1.8rF at T = 0. Two fermions are maximally entangled if they are at the same
position.
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2. ELECTRONS IN BCS STATE

In superconductors the electrons with opposite momentums are pairing in s-state with zero
spin of pair. One has

â

(
f ,

1
2

)
= uf α̂

(
f ,

1
2

)
+ vf α̂+

(
−f ,−1

2

)
,

â

(
f ,−1

2

)
= uf α̂

(
f ,−1

2

)
− vf α̂+

(
−f ,

1
2

)
,

where

uf = cos
θf

2
, vf = sin

θf

2
, tan θf =

Δf

E(f)
,

and Δf is the energy gap. If Δf = 0, then ufvf = 0.
Correlation function for two electrons with parallel spins equals

K(r, σ, σ) = n2
σ(1 − φ2(r)),

(see (1), (2)). The electrons with parallel spins are negative correlated with correlation radius
r− ∼ rF .

For opposite spins we get

K(r, σ,−σ) = n2
σ(1 + |φ1(r)|2),

where

φ1(r) =
1

nσ(2π)3

∫
df eifr v∗(f)u(f). (3)

The electrons with opposite spins are positive correlated with correlation radius r+. This
radius is deˇned by the width of the layer in which v(f)u(f) is much different from zero:

fF − Δ(fF )m
�2fF

< f < fF +
Δ(fF )m

�2fF
.

The correlation radius r+ is a value of order

r+ ∼
(

Δ(fF )
εF

)−1

r−,

where εF is Fermi energy. Since Δ(fF ) � εF in BCS state, it follows that r+ 	 r−.
Two-spin reduced density matrix equals

ρ̂(r) =
1
γ′

⎛
⎜⎜⎜⎜⎜⎝

1 − φ2 0 0 0

0 1 + φ2
1 −(φ2 + φ2

1) 0

0 −(φ2 + φ2
1) 1 + φ2

1 0

0 0 0 1 − φ2

⎞
⎟⎟⎟⎟⎟⎠

,
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where
γ′ = 2(2 − φ2(r) + φ2

1(r)).

According to PeresÄHorodeski criterion [9] two spins are entangled if (2φ2(r) − φ2
1(r)) > 1.

In BCS state when the energy gap Δf is different from zero only in narrow spherical
layer in the neighborhood of fF we get φ2

1(r) � 1/2 everywhere. This means that two-spins
entanglement is similar to free electron case and two fermions are entangled if the relative
distance between them is smaller than 1.8rF .

The matrix ρ(r) has the form

ρ̂(r) = (1 − p)
Î

4
+ p|Ψ−〉〈Ψ−|, p =

2(φ2(r) + φ2
1(r))

γ′ ,

where |Ψ−〉 = 1/
√

2(| ↑↓〉 − | ↓↑〉 is the maximally entangled spin singlet state of the pair.
The range of entanglement is p > 1/3.

3. EQUAL SPIN PAIRING

In super�uid state of 3He [10] the fermion (s = 1/2) atoms with opposite momentums
are pairing in p-state with spin of the pair equal unity. We consider one of the Equal Spin
Pairing (ESP) state in which the pairing of atoms has the same spin projection, for example,
A-phase. The quasiparticle operators are deˇned by transformation

â

(
f ,

1
2

)
= uf α̂

(
f ,

1
2

)
+ vf α̂

+

(
−f ,

1
2

)
,

â

(
f ,−1

2

)
= uf α̂

(
f ,−1

2

)
+ vf α̂

+

(
−f ,−1

2

)
,

where
uf = u−f , vf = −v−f , u2

f + v2
f = 1.

Correlation function for two fermions with parallel spins equals

K(r, σ, σ) = n2
σ(1 − |φ(r)|2 + |φ1(r)|2),

(see (1)Ä(3)). The particles with parallel spins are correlated. The negative correlation radius
is r− ∼ 1/fF . If energy gap Δf is essentially different from zero only in the narrow layer

near fF , then the positive correlation radius is r+ ∼
(

Δ(fF )
εF

)−1

r− and r− � r+. The

opposite spins are not correlated
K(r, σ,−σ) = n2

σ.

We obtain

ρ̂(r) =
1
γ′′

⎛
⎜⎜⎜⎜⎜⎝

1 − |φ|2 + |φ1|2 0 0 0

0 1 −|φ|2 0

0 −|φ|2 1 0

0 0 0 1 − |φ|2 + |φ1|2

⎞
⎟⎟⎟⎟⎟⎠

,
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where
γ′′ = 2(2 − |φ(r)|2 + |φ1(r)|2).

According to PeresÄHorodeski criterion [9] the condition of entanglement is

(2|φ(r)|2 − |φ1(r)|2) > 1.

In ESP state when the energy gap Δf is different from zero only in narrow spherical layer
in the neighborhood of fF we get |φ1(r)|2 � 1/2 everywhere. This means that two-spins
entanglement is similar to the free electron case.

CONCLUSION

The two-particle density matrices of Fermi systems with coupling were obtained. We
present the relation between the total correlation, the entanglement measure and the pair-
distribution functions.

It is well known that the physical properties of the systems depend on the s- or p-
pairing signiˇcantly. Nevertheless, in BCS approximation when energy gap is essentially
different from zero only in the narrow layer near Fermi surface, the pairing changes two-
spins entanglement slightly. Entanglement is essentially deˇned by Fermi statistics. The
existence of Fermi pairs slightly reduced the entanglement measure.
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