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1 Introduction and Statement of the

Investigated Problem

Variational approach is an essential and powerful method 1,
2] in the theory of gravitation, not only for obtaining the Einstein
equations, but also the equations of motion in the case of some
space-time decomposition, for example the (3+1) splitting [3] of
space-time. Presently, another space-time splitting - (4+1) is fre-
quently used within the framework of the Kaluza-Klein theories,
called Randall-Sundrum models [4, 5], where the main idea is that
the four-dimensional Universe may have appeared as a result of a

compactification of a five-dimensional one with a line element, given
by

ds? = e_zkréfﬁn“"dx”dx" -+ r?dxg , (1)

where 7. is a compactification radius, 7*” is the ordinary Minkowski
metric, 5 C [0, 7] is a periodic coordinate and pv are four dimen-
sional indices. In both cases, the gravitational Lagrangian is of the
form

L=—/—gR= L(gij,gij;hgij;kl) ’ (2)

where ; may denote either a partial or a covariant derivative as
a result of the standard scalar curvature representation.Let us de-
compose the metric tensor g;; according to the known formulae

_ 1 _
9i5 = Pij — Euiuj ) (3)

where p;; is the projective tensor (satisfying the projective rela-
tion pfp; = pl # 6]), u; are the (covariant) components of the

vector field u with a lenght e = u;u’. If formulae (3) is applied
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in both cases,a substantial difference will be noted. In the ADM
(3+1) approach, the vector field components are identified with
some components of g;; so that p! = ] and the projective ten-
sor components turn out to coincide with the three-dimensional

components g}?), defined on the three-dimensional submanifold, i.e.

Dij = gg’). In a (4+1) space-time splitting, or in some other kind

of decomposition, for example, warped compactifications [6] to four
dimensional Minkowski space on seven-dimensional manifolds, this
will be of course no longer the case.The already known nice geo-
metrical meaning of the embedded space will not be valid, and one
will have to deal with some kind of a multidimensional projective
formalism and a decomposition

9ij = pij +hij (4)

where space-time is decomposed into a p-dimensional subspace and
orthogonal to it (n — p)—dimensional space [7]. If we restrict our-
selves only to the gravitational part in the action (it is present in all
mentioned cases in its standard form), then the combined system of
equations of motion for p;; and for u; (or respectively, for h;;) have
to be solved. Another example in the same spirit is from relativistic
hydrodynamics, where the vector field u will be the tangent vector,
defined at each point of the trajectory of motion of matter.

However, there is also another ”alternative” , and it shall be
investigated in the present paper. Namely, in view of the expression
(3), let us simply assume that g;; depends on two vector fields
u = u(x1, Ta, ......Tn) and v = v(T1, Ta, ....Ty) :

g,;j(ﬂ.',’l, Ta, :cn) = gij(ﬂ), 7) . (5)
The left-hand side suggests that g;; may be regarded (for each pair

of 7 and j) as some hypersurfaces on the n—dimensional manifold,
but they may also be unterpreted as defined on a two-dimensional
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manifold, represented by the vector fields v and v. In terms of the
differentials du and dv, definite differential-geometric characteris-
tics may be assigned, such as the first and the second quadratic
form [8]. This is the reason why in the present paper the choice of
the variables willl be related with differential quantities.

2 First and Second Differentials

and Variations

In general, the differential of a vector is not necessarily a vector.
Here it shall be assumed that du and dv are defined in the corre-
sponding tangent spaces T, and T, of the vector fields u and v.
The first differential dg;;(u,v) will be given by the expression

3%‘
ov

(for brevity further the indices k will be omitted). In the case when
%%%(a:‘l), ..z0) and %,{-(x?, ...td)  form a basis in the tangent space
to the hypersurface g;;(z1, 2, ...z, ), du and dv may also be inter-
preted as the linear coordinates of the tangent vector. It can easily
be proved that in a curved space the differentials of a vector, hav-
ing vector transformation properties are only the covariant dif-
ferentials. The kind of the differential is of no importance for the
presented formalism in this paper. Also, instead of u and v one
may write down some other (tensor) variable, related for example
to ak—dimensional hypersurface, embedded in the n—dimensional
spacetime.

Of more importance is the expression for the second differen-
tial

agljd + agzgd k __ 8gij

dgij(u,v) = Bk ok 5 du + dv (6)

%95 avy . (1)

an.. 09
2 . — ) ij
) d gzj(u7v) (d ) +2 ou a,v udv 6’1)2
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The expressions for the first and second variations of g;;(u, v)

have the same structure. Note that Q;Ui{;i(du)z is the concise nota-
tion for

0%9ij v 2 _ 0%9i iy 005

L - : 2 id k .ZJ du’ 2

502 (du) 6u’8u’°du u®+ G2 (du*)?, (8)
and also it has been assumed that §%u = d*u=6%v = d?v = 0. If
du = a;dz*, then we will have

Oa; _ Oy
ozk Ozt

d*u = a;d?z" + da; A dt = a;d%z* + ( Ydzida® = 0.

(9)
Provided the Poincare’s theorem is fulfilled and d?z* = 0 (i.e. dz* =
const. — dx is a coordinate line), one would have d?u = 0 only if

6ai aak

ok Bt = 0 (10)
for every pair of ¢ and k. This means that du is either an ex-
act differential (a; = const.), or that the vector field du has
zero-helicity components a; (rota = 0, eq.(10)) in regard to the
chozen basic vector field components dz’. Note that if rota = 0,
but dz* are not basic vectors, one would have d?u #0. From a
mathematical point of view, models with d?z* # 0, when the scalar
product < e;, dz? >= f} # ! have been considered in [9)].

3 Formulation of the Variational

Problem in the Case of Different
Operators of Variation and
Differentiation

The gravitational part of the action, which will be investigated, is
of the type



S = /L(gij,dgij,dQQij)dn:L' . (11)

The first variation of the action (provided the volume element
is not being varied) is

oL oL oL
555/5Ld"x‘:‘/ [—(5 ii + =————0dg;; + ———6d? il Az
09i; Jii 0(dg;;) Jii 0(d%g;;) %
(12)

The operators ¢ and d are defined in one and the same way, but here
they are distinguished. In the spirit of Cartan’s works [10], they
may correspond to variations and differentiations along different
paths (not necessaril u and v). For example, one of the operators
may be defined on a submanifold.

To find the equations of motion for u and the divergent terms,
one would need to interchange the places of the operators d and
¢. For that purpose, the corresponding expressions for [4, d] g;; and
(6d* — db?) gi; have to be found. The first one is

P;; = [6,d] gij(u,v) = ddg;j(u,v) — ddg(u,v) =

5895 16, d)u + (u > v) | (13)

where (u > v) means the same expression with interchanged u
~and v. As for the second expression, it shall be presented in the
following compact and symmetric form

(5(12 - d52) gij(u, V) = Qi]‘ = 5éij(du; dV) - déij(dua 6V) ’ (14)



where @ij(du, dv) is the quadratic form in respect to du and dv
from eq.(7)

éij(du, dv) Engij(u, v) =
2.,
_ 99 (du)2+289” 99i g udv+ 29 (dv)? | (15)

T Qu? ou Ov ov?

éij(éu, dv) is the same form, but with du and dv.
By means of the last three expressions, expression (12) for the
variation of the action can be represented in the following form

5L ©
05 = | |50+ A+ 6By +dCy| Pw =0, (16)

where

oLO _ 9L [ oL ]+6d[ (aL ] (17)

6gij  Ogij d(dgi;) 0(d?g:5)
This expression will represent the equation of motion for wu, pro-
vided also that the variations at the endpoints vanish and 6 B;; = 0.

A;j is a term, which appears in (16) due to the assumption § # d
and will disappear when § = d

oL ~
Aijj(u,v) = -6 [m] Qsj(du,dv) +
oL
*d [a(dzgij)] Qij(0u, 6v) +

" <8gij 32L 8gij 82L

ov 0ud(dg;;) Ou Bva(dgij)) (dudv —dudv) . (18)
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B;; is the expression

) oL oL ~
B,;j = mdg” — d(mﬁgm + a(dTg”)‘Qm(dua d’l)) ’ (19)

and Cj; is equal to

oL oL ~ oL
Cij = ——062gii — ————Q;i(du,dv) = 2——— K :6udv .
T O(d?gi;) TV O(d?g) i ) A(d2gi;) 7.
(20)
In (20) K;; is given by
3291‘;’ 3gij agij
Ky = oudv Ou Ov (21)

Note that if the variations at the initial and final endpoints of the
chosen curves disappear and also ¢ = d, then the equation K;; =0
(taking into account second variation of the metric tensor §%g;;)
appears as a necessary and sufficient condition for the fulfillment
of the equations of motion (17).



4 First Variation of the Lagrangian as

a Third-Rank Polynomial

From the representation (16) of the variated Lagrangian, let us
express all variations and differentiations in terms of the vector
fields u and v. The following notations are introduced

Xi=o' Xi=&' Zi=ddut  Zi=ddv
Y} = du Yy = dv* T} = déu T =dsv' .  (22)

After some transformations, an expression for the first variation
of the Lagrangian will be obtained:

oL={PiXi+ P X+ QiZi+ B2} +

+H{PEX1Y: + PEYi Xo + PY XY, +

+§§’Y§X1 + Q11 X + Q2T X, }

+{PEX XY+ PYX XY, + PEXG VY, + PXiY,} +

+{PEXi Y2+ BEXYE + PEX,YE + RXv2}=0.  (23)



If we assume (just from a general consideration and not from a con-
crete example) that the coefficient functions P*,P’, ..., P7“,137”, 0,0,
are independent of the variables X;, X,........ 11,7, and depend
only on u and v, then (23) will represent a non-homogeneous
polynomial of third degree (the highest degree in the polyno-
mial) and it is linear in respect to the variables X, Xy, Z;, Z,
quadratic in respect to X, X, Y1, Y2, 71, T» and cubic only in re-
spect to X3, X»,Y),Y5. Note that the polynomial structure is rather
specific, since Z;, Z; enter only the linear terms and 77,75 only
the quadratic terms (and in combination only with X, X, and
not Y3,Y3). In (23) Py....... P;,Q1, Q2 are functions of v and v ,
which are of the following form

u oL Bgij . w oL Bzgij
P1 = 6gij ou ’ P2 o 3(dgz]) ou? ’ (24)
pu = ﬁ oL agi,» _ 2 oL 8gij + oL 829,-j
37 v | 0(dgy;) Ou Ou | 0(dgsj) Ov 0(dgi;) Oudv ’
(25)
. _ . OL 0Ky " 8L
2 2., 27T
Py = 0°L  0%g; pr= 0°L

oud{d?g;;) Ou? ovd(d?g;;)
15{’ ..... ﬁ;’ are the same expressions, but with v and v interchanged.
It should be noted, however, that depending on the concrete La-
- grangian, powers in du, dv, du, 6v may come also from the coefficient
functions, therefore changing the highest degree of the polynomial.
Further the problem shall be formulated in terms of a third-rank
polynomial, keeping in mind that the degree of the polynomial does
not change the formulation, but only the technical methods for solv-
ing the algebraic equation.
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5 Third—Rank Polynomials -

Formulation of the Problem from an
Algebro-Geometric Point of View

Let us formulate the investigated problem from the point of view
of algebraic geometry, using the well-known approaches and termi-
nology in [11-13]. For a clear and illustrated with many examples
exposition of the subject, one may see also [14].
Let the defined in (22) set of variables
(X4 X3, YEYE, 728, Z5 T, TS)  (i=1,2...,n) belong to the
algebraic variety XC A™(k), where A™(k) is the n—dimensional

affine space, defined over the field &k = k[X1, X5, Y1,Y5s, Z1, Z5, T1, T1)
of the functions in 8— variables. The coeflicient functions

Pt PP P} Py, ... P} P? (1, Qs are defined not on the same field
k, but on the manifold M. In fact, A”(k) is the cartesian product
of n—tuples of k. Since all the the components of the metric tensor

and of the vector fields are also defined on M D (29,29, ....... z2),
for each point (9,3, .......z%) a mapping ¢ : M — X between the

elements of the manifold and the elements of the algebraic variety
is also defined

o(z, 23, ..z0)

= (X}(z,..22), Xi(Y,...20), ..., TH(x?, ..., %), Ti(2?, .., 22) .

(27)
Now let R[X?, X1, Y}, Y3, Z1, Zi, Tt Ti] denotes the ring of all poly-

nomials f1, fa....., fn-.., defined on the points X of the algebraic va-
riety C A"(k) and belonging to the ideal V' (J, k), such as
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V(I E) ={X c A"Ek) : (A(X), f.(y),....,f,,(.Y)...):o}(ég)

Therefore, from (27) and (28) it is easily seen that the following
sequence of mappings is defined

M—X —V(Jk). (29)
The considered in this paper problem can be defined in the

following way:

Proposition. The variational problem §L = 0 is equivalent
to finding all the elements X% X} Y¥ Y§ Z¢ Z5 Ti T of the
algebraic variety X, which satisfy an algebraic equation f(X) =
0, defined on the elements of the variety and with a finite number of
coefficient functions P, P}, Py, Py, ....... P* P? Q1,Q- - functions
of the metric tensor and the two chozen vector fields. The algebraic
equation belongs to the ideal

I= (Pt Py P By, PP QL Q)
C R[X{, X3, Y1, Y3, 24, 235, T}, T3], _
where R is the ring of all the polynomials, defined on X.

If found and considered as functions, defined on the manifold
M, the elements of the algebraic variety X are no longer indepen-
dent, but will represent a system of partial differential equa-
tions in respect to du (or du, for example). Further, if du is known,
then again the new system of partial differential equations (this time
in respect to u) will give an expression for u (if v is assumed to be
known), or it will give a relation between the two vector fields (if u
and v are not known). Furthermore, the obtained relation between
the vector fields from the variational principle 6L = 0 might be
used in the determination of the equation of motion for . In an
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algebraic language, the simultaneous investigation of the variation
equation 0L = 0 and the equation of motion means that the in-
tersection "varieties” of the two algebraic surfaces (defined by the
corresponding algebraic equations) should be found.
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Jumutpos b. T E4-2001-242
IpoexTuBHbIi hopManu3M U HEKOTOPhIE METOABI anrebpanyecKon
reOMETPUH B TEOPHUH I'PaBUTALIUN

IIpuMensI0TCA METOOBI anrebpanyecKoil reoMeTpUH K BapHallHOHHOMY (hopMa-
JM3My TeopuM rpasurauuM. Ilpeanonaraercsd, 4To METPUYECKHIl TEH30p 3aBHCHT
OT [BYyX BEKTODHBIX HOJIEl W M V U YTO IPaBUTALMOHHBIH JaTpaHXHUaH 3aBUCHUT
OT METPHYECKOTIO TeH30pa U ero aucgepeH1uanos, NepBoro U BTOPOro.

ITokasaHo, 4TO NIEpBas BapHalMs IPaBUTAMOHHOIO JIarpaHXHaHa MOXET ObITh
IpeacTaBlcHa B BHAE IIOIMHOMA TPeThel CTeneHu oT 8u, v, du, dv. CiaepoBarens-
HO, pellieHHe BapHallMOHHOH 3aayl OKa3bIBAaeTCH SKBHBAJICHTHBIM HAXOXICHHIO
BIIEMEHTOB aIre6panyecKoro MHoXxecTsa (8u, 8v, du, dv), yIOBIETBOPSIOIIUX aJre-
6panyecKoMy YpaBHEHMIO.

Pabora BrmonHeHna B Jlaboparopun Teoperuyeckoit ¢usuku um. H. H. Boro-
mo6osa OUSAH.

Coobmenne O6beIMHEHHOTO MHCTUTYTA SAEPHBIX MccnenoBanuil. Ty6na, 2001

Dimitrov B. G. E4-2001-242
Projective Formalism and Some Methods from Algebraic Geometry
in the Theory of Gravitation

The purpose of this paper is to propose the implementation of some methods
from algebraic geometry in the theory of gravitation, and more especially
in the variational formalism. It has been assumed that the metric tensor depends
on two vector fields, defined on a manifold, and also that the gravitational La-
grangian depends on the metric tensor and its first and second differentials. As-
suming also different operators of variation and differentiation, it has been shown
that the first variation of the gravitational Lagrangian can be represented as
a third-rank polynomial in respect to the variables, defined in terms of the variated
or differentiated vector fields. Therefore, the solution of the variational problem is
found to be equivalent to finding all the variables — elements of an algebraic vari-
ety, which satisfy the algebraic equation.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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