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The conventional canonical treatment of constrained systems (1]
deals with the constraints which follow only from the Tinitial sin-
gular Lagrangian. However, there are problems where the La-
grange constraints are introduced ‘by hand’ in addition to the
initial Lagrangian or when from the very beginning of the Hamil-
tonization procedure, some of the constraints that follow from the
Lagrange function, are taken into account manifestly. For exam-
ple, the Lorentz gauge in electrodynamics cannot be canonically
implemented [2]. The purpose of this note is to show that such
”noncanonical” constraints can be implemented by the Berezin al-
gorithm [3]. The algorithm provides a unified consideration of the
singular Lagrangians and nonsingular ones with constraints that
depend on velocities and time:
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' Let us consider the Lagrangian L(q,q,t) and the set of the
Lagrangian constraints (1). The relevant extended (generalized)
Lagrangian reads :
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where A, are the Lagrange multipliers. All the constraints to be
considered depend explicitly on velocities ¢;. When among them,
~ there exists the equation ¢(q,t) = 0, we replace it, after differen-
tiating with respect to time, by the equivalent equation
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Now, let us introduce the extended momenta for the Lagrangian
function (2)
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Berezin [3] has assumed that the velocities ¢; and the Lagrange
multipliers A,(t) can be expressed uniquely in terms of ¢; and p;
by resolving the constraints (1) together with Eqs. (4). In this case,
the variational problem is said to be a nondegenerate (nonsingular)
one. On the contrary, the requirement of the initial Lagrangian
being nonsingular
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becomes superfluous. In the following, only the dynamic sys-
tems that satisfy the Berezin assumption will be considered. The
method does not lead to the reduction of degrees of freedom of
the systems in the phase space. However, the transition to the
canonical momenta p, corresponing to the initial Lagrangian L
takes place if
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It will lead to the primary Hamiltonian constraints in this ap-
proach. As an illustration, we apply the Berezin method to a
number of constrained Lagrangian systems.

1. The Lagrangian linear in velocities [3, 4, 5]
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Since the Lagrangian (7) is singular, and all the equations of mo-
tion
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become first-order equations, the extended Lagrangian acquires
the form
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and the extended momenta read
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It is possible to resolve Eqs. (8) with respect to ¢;, because there
exists the inverse matrix fgl such that
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Also, resolution of (10) with respect to \; gives us

A= E f51(®i = £7). (12)



Taking into account that £ in (9) on the surface of constraints has
the form

L= }j_j il a - V()
we find that

H= Zptqt L= E ij aV + V(q). (13)
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Going over to the canonical momenta p, from (6) and (12), we
obtain the primary Hamiltonian constraints (invariant relations)

Ails=p = 0 => pi = fi(q). (14)

The kinetic term in (13) is linear in p, thus, H is singular. There-
fore, again there is no Legendre transformation from H to £ be-
cause the relations
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do not contain p. However, with the help of the Berezin algo-
rithm, the system (13), (14) can be transformed into the initial
Lagrangian system. Indeed, we derive the extended Hamiltonian
in the form ‘
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Thus, we arrive at the system of equations
%
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and can construct the Lagrangla,n

L= Ep.’&i — Hezt = Z&;fi(Q) - V(q).
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Going over to the generalized velocities § — ¢ via the equation
" pilz = 0, from (13) we once again obtain the Lagrangian con-
straints (11). 2. Relativistic point particle L = —m [ \/22(7)dT [6].
If the parameter 7 is chosen as the proper time, the Lagrangian
constraint is 2 = ¢ = constant. The density of the extended

Lagrangian for this system takes the form
L =—m\/2%(1) — ,\%[:};2(7) -, (17)
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As before, we use equations (18) and the above constraint to find
Aand z,

= R
A= M, ; Pu (19)
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As a result, we arrive at the Hamiltonian in the following form
(taking into account that on the constraint shell, £ = —mc):
H=—p'2,— L =c(m—p) (20)

Turning to the canonical momenta A|;=, = 0, from (19), we get
the Hamiltonian constraint

Vp? =m. (21)

The Hamiltonian equations for (20) coincide with the Lagrangian
ones: oy oy
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The obtained Hamiltonian (20), as well as the Lagrangian, is sin-

gular, but applying the same algorithm, it is possible to restore
the initial Lagrangian system:

H=c(m—p) + um— V) = &, = (c+ u)—2

=0.
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Adding the constraint (21) to this system, we obtain

v2 :'Eu
p=\VzT —¢c, p,=m —-

z

Finally,

L=-piz —H= —m\/52, i =0 = Vi2=c

3. Relativistic particle with the gauge z° = Pr/m.
Differentiating this gauge with respect to time z° = P/m and
substituting it into the extended Lagrangian, we obtain

L =-my/(29)2 — x* — dm(3° — P/m), (22)
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Applying once more the condition z° = P/m, we have
. P Y p mx
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Hence, it follows that
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The Hamiltonian reads
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Going over to the canonical momentum py by means of A|5,=p, = 0,
we derive the Hamiltonian constraint py = 1/p? 4+ m2. Then, the

Hamiltonian equations are as follows:
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=0, p=_§_—_0,

4. Relativistic string in the orthonormal gauge [7]:

Po = 6:1;0

L=—y/(22')? — 222, 3’427 =0, (iz')=0. (26)

The extended Lagrangian in this case reads
A
L = —v+/(iz')? — %22 — 71(;&2 + z'%) — Ay(22'),

and taking account of the constraints we get for extended momenta
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Projecting this onto z], and using the constraints, we find that
(pz') = A\pz'?, and then,

(P2')
/\2 = :L.l2 . (28)
Squaring (27), we obtain
51’2 512 — 52 2
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Given A; and A, we can express &, in terms of z), and p, as
follows:
(Pz')z), — 2P,
T, =
(p:c’)2 xlz
which satisfies the constraints 1dentlcally. As a result, the Hamil-
tonian for the string assumes the form

H=—p'z, — L =—+/(pz')? — p2a'2 — v z". (30)

Going over to the canonical momenta p, according to formula (6),
we arrive at the Hamiltonian constraints

Mil,=0 = (pz') =0, p*++%" =0. (31)



On the surface of these Hamiltonian constraints, H = 0, the canon-
ical equations are as follows:
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Taking account of constraints (31), we can rewrite these equations
in the form

T, =—
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The Hamiltonian (30) is singular det “ er5p ” = 0. But using the

Berezin algorithm, we can pass to the initial Lagrangian L and
constraints (26). Indeed, the extended Hamiltonian is of the form

Heot = —+/(pz')? — p22'2 — vz — g—;(zf +7°z") — pa(pz’),

from which and the subsidiary conditions we find

s OHew ; (32)
T, = aput =711+ p1)pu + paz,, => (22') = paz”, (32)
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and therefore, from (32), we get

Finally, we obtain

L=—p,&" — Heg=—71 /(xfgc)z _ it



filzes = 0= (22') =0, &%+ 2% =0.

5. Electromagnetic field with the Lorentz gauge d,A* = 0 [8].
The extended Lagrangian with an external source j* is of the
form

L= —iFwF‘“’ — JuA* — X(0,AY),

FW = 94 AY — 9" A*, 9,j* = 0.

This gives the time component of the extended momenta 7o as
follows

. oL
o = _a_A=B = A (33)
For the space component 7, we derive the canonical expression
oL
=—=A+VA° 34
A (34)

According to the Berezin algorithm, adding the Lorentz gauge
A = —(VA) (35)

to these equations, resolving the velocities A* and the multiplier
A in terms of A* and 7#, we obtain

A=7% A=m—-VA°, A°=_(VA). (36)

Now, one can construct the Hamiltonian
1
H=7(VA)+ 5(1r2 + (rot A)?) — (7 V A°) + j, A",

It gives the canonical equations

oH . OH

A% = — e —(VA), A=57-r—=1r—VA°

coinciding with (34) and (35). Also, for the momenta, we get

3

o= 2 oM
%o ZamJ 8@ azy) ~ ot (V™)



3

. OH ) oH . -0
,r__a_A+JZ=;aTjW_J+VW —rotrot A.  (37)

And for the components of 7# and A*, we have

A0= AO .0_,.',0 N
e I

Or =)+ V% 0% =0. (38)
After the transition A|zo=0 = 0, from (36), we obtain 7% = 0, and
all the equations (37) and (38) are cast into the correct equations
of electrodynamics in the Lorentz gauge.

To conclude, we note that contrary to the Dirac approach,
the suggested algorithm allows unique construction of the Hamil-
ton formalism for constrained Lagrangian systems with constraints
that depend on velocities and, in the general case, do not depend
on the Lagrangian form. ‘
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KaHnoHHYeCKasd TPaKTOBKa JIaTPaHXEBBIX CBA3EH

KaHoHHuyeckas TpakTOBKa AMHAMHYECKHX CHCTEM C SBHO 3aJaHHBIMH 3aBHCH-
IIIHMH OT CKOPOCTeil J1arpaHXeBbIMH CBS39MH, NpeNIOXeHHas BepesnHbM, npuMe-
HseTCA K Py KOHKPETHBIX CHCTEM: JIarpaHXHaHy, TMHEHHOMY MO CKOPOCTSM, pe-
JIATHBHCTCKO#M YacTHle B KaTHOpOBKE COOCTBEHHOIO BPEMEHHM, PEJIATHBMCTCKON
CTpyHEe B OPTOHOpPMalbHOH KanuOGpOBKE M K 3/MIEKTPOMATHHTHOMY IOJIO B KJIH-
6poeke JlopeHua.

PaGora BbimonneHa B JlaGoparopuu teoperudeckoil ¢usuku um. H. H. Boro-
mo6osa OHSAN.
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On the Canonical Treatment of Lagrangian Constraints

The canonical treatment of dynamic systems with manifest Lagrangian con-
straints proposed by Berezin is applied to concrete examples: a special Lagrangian
linear in velocities, relativistic particles in proper time gauge, a relativistic string
in orthonormal gauge, and the Maxwell field in the Lorentz gauge.
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